
6. Precession. p. 1. July 27, 1999

6. Classical Precession of the Angular Momentum Vector

A classical bar magnet (Figure 11) may lie motionless at a certain
orientation in a magnetic field.  However, if the bar magnet possesses angular
momentum, it would not lie motionless, but would execute a precessional
motion about the axis defined by the applied magnetic field.  A classical
analogue of the expected motion of a magnet possessing angular momentum in a
magnetic field is available from the classical precessional motion of a rotating or
spinning body such as a toy top or gyroscope.  The angular momentum vector of
a spinning top sweeps out a cone in space as it makes a precessional motion
about the axis of rotation and the tip of the vector sweeps out a circle (Figure 12
left). The cone of precession of a spinning top possesses a geometric form
identical to the cone of possible orientations that are possible for the quantum
spin vector, so that the classical model cans serve as a basis for understanding
the quantum model.  A remarkable, and non-intuitive, feature of a spinning top
is that it appears to defy gravity and precess, whereas a non-spinning gyroscope
falls down!  The cause of the precessional motion and the top's stability toward
fallin is attributed to the external force of gravity, which pulls downward, but
exerts a torque "sideways" on the angular momentum vector.  This torque
produces the non-intuitive result of precession.  By analogy, in the presence of an
applied field, the coupling of the magnetic moment with the field produces a
torque that "grabs" the vectors and causes them to precess about the field
direction.
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Figure 12.  A vector diagram comparing the precessional motion of a spinning
top to the precessional motion of  spin angular momentum vector S and the



6. Precession. p. 2. July 27, 1999

precessional motion of the magnetic moment, µµµµS in the presence of an applied
magnetic field.

The classical vector properties of the angular momentum of a toy top or
gyroscope are analogous to many of the important characteristics of the vector
properties of the quantum mechanical magnetic moment.  The reason for the
close analogy is due to the important and critical connection between the
electron's magnetic moment and the angular momentum due to the electron's
spin.  For example, the rotating mass of a gyroscope possesses angular
momentum which can be represented by a vector whose direction is along the
symmetry axis of rotation.  A gyroscope in a gravitational field precesses, i.e., the
axis of its rotation rotates about the direction of the gravitational field (figure 12
left).  What factors determine the rate of precession of the gyroscope?  The
answer is the force or gravity and the inherent angular momentum of the
gyroscope.   If the angular momentum, which is determined by the angular
velocity of spin and the mass of the gyroscope, is constant, the rate of precession
ωωωω is determined only by the force of gravity, so that there is a proportionality
between the rate of precession and the force of gravity, G, as shown in eq. 12,
where γ (compare to the magnetogyric ratio in eq. 8 and eq. 9) is the scalar
proportionality constant between the precessional frequency and the force of
gravity.

ωωωω  =  γG (12)

Since the mechanics of the precessional motion of a gyroscope in the
presence of gravity are of the same mathematical form as the mechanics of a
magnetic moment associated with a spinning charged body in the presence of a
magnetic field, we postulate that the vector due to the magnetic moment of  the
quantum magnet undergoes precessional motion in an applied magnetic field.

Precession of a Quantum Magnetic Moment in an Applied Magnetic Field.

There are several features of the vector representation of a quantum
mechanical magnetic moment that are critical for an understanding of how
electron spin manifests itself in photophysical and photochemical processes.  The
first is the magnitude of the magnetic moment; second is the orientation of the
magnetic moment with respect to a defined axis of quantization; the third is the
coupling strength of the magnetic moment associated with electron spin to other
magnetic moments; and the fourth is the angular frequency and direction of
precessional motion made by the magnetic moment about a defined axis of
quantization.  In order to understand the quantum model, we shall first consider
the concrete features of a classical model of a spinning electron and then move to
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determine the new features that are imposed on an electron and its spin by the
laws of quantum mechanics.

Application of a magnetic field has the effect of producing a torque on the
magnetic moment vector in the same way that the force of gravity produces a
torque on the angular momentum of a spinnig top (Eq. 12).  According to
Newton's classic Laws, this torque is equal to the rate of change of angular
momentum.  For a single electron in a given orbit, the absolute magnitude of the
spin angular momentum is fixed, so that a magnetic torque can only be produced
by changing the direction of the angular momentum vector, and not its
magnitude.  The conclusion is that the quantum magnetic moment vector,
together with the angular momentum vector (whose motions are identical except
for direction in space) must precess about the axis of the applied field because
precession allows the direction of the angular momentum to change
continuously without changing the magnitude of the angular momentum.  If the
amount of angular momentum is \, the fundamental unit of angular momentum
in the quantum world (i.e., the value of the angular momentum for S = 1) then
the angular momentum vector and the magnetic moment vector precess about
the field direction with a characteristic angular frequency, ω, given by eq. 13,
where γe is the magnetogyric ration of the electron and H is the strength of the
magnetic field (one unit of angular momentum is assumed).

ω (Larmor frequency)  =  γeH (13)

For a fixed unit of angular momentum of \, the rate of precession, ω, of the
spin and magnetic moment vectors about the magnetic field H  depends on the
magnitude of both γγγγe and H and is termed the Larmor frequency (Figure 12).  As
mentioned above, this precessional motion is directly analogous to that of the
motion of a gyroscope under the influence of gravity.  We should remind the
reader that the value of ω also depends on the amount of angular momentum,
which was assumed to be one unit (\) in the example.

The second important feature differentiating the classical magnet from the
quantum magnet is that a classical magnet may achieve any arbritrary position in
an applied field (of course, the energy will be different for different positions),
but the quantum magnet can only achieve a finite set of orientations with respect
to the applied field, i.e., the orientations of the quantum magnet with respect to
the applied field are quantized.  This result is due to the principle of
quantization of angular momentum, which can possess only the following values
on the z axis, depending on the value of MS:  0\, \/2, \, 3\/2, 2\, etc., each value of
which corresponds to a cone or possible orientations about the z axis.  We now
show that this feature leads to the conclusion that the cones of possible
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orientations become cones of possible precess ion for the angular momentum
and magnetic moment vectors in the presence of a coupling magnetic fields.

The Quantum Magnet. Precession in the Cone of Orientations.

Individual spin vectors are confined to cones which are oirented to cones
which are oriented along the quantization axis.  The cone of possible
orientations (for each value of MS) of the angular momentum vector also
represents a cone of precession when the vector is subject to a torque from some
magnetic field.  When a magnetic field is applied along the z axis, the quantum
states with different values of MS will possess different energies because of the
different orientations of their magnetic moments in the field (recall from eq. 9
that the direction of the magnetic moment vector is colinear with that of the
angular momentum, so if the angular momentum possesses different
orientations, so will the magnetic moment).  These different energies, in turn,
correspond to different angular frequencies of precession, ω, about the cone of
orientations.   The energy of a specific orientation of the anglar momentum in a
magnetic field is directly proportional to MS, µµµµe and Hz (eq. 11, previous section).

EZ  =  \ωS   =   MSgµHz  (14a)

Thus, the value of the spin vector precessional frequency, ωS, is given by Eq. 14b.

   ωS  =   [MSgµHz]/\ (14b)

From Eq. 14b, the values of ω are directly related to the same factors as the
magnetic energy associated with coupling to the field.  For two states with the
same absolute value of MS, but different signs of MS, the precessional rates are
identical in magnitude, but opposite in the sense of precession (if the tips of the
vectors in Figure 12 were viewed from above, they either trace out a circle via a
clockwise motion or via a counterclock wise motion).  This opposite sense
corresponds to differing orientations of the magnetic moment vector and
therefore different energies, EZ.

From classical physics, the rate of precession about an axis is proportional
to the strength of coupling of the angular momentum to that axis.  The same
ideas hold if the coupling is due to sources other than an applied field, i.e.,
coupling with other forms of angular momentum. For example, if spin-orbit
coupling is strong, then the vectors S and L precess rapidly about their resultant
and are strongly coupled.  The precessional motion is difficult for other magnetic
torques to break up.  However, if the coupling is weak, the precession is slow
about the coupling axis and the coupling can be broken up by relatively weak
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forces.  These ideas will be of great importance when we consider transitions,
such as intersystem crossing, between magnetic states.

Since the magnetic moment vector and the spin vector are colinear,
these two vectors will faithfully follow each other's precession,  so that we do
not need to draw each vector, since we can deduce from one vector the
characteristics of the other.  We must remember, however, that one vector has
the units of angular momentum (\) and the other has the units of magnetic
moment (J/G).  Figure 13 shows the vector model of the different rates of
precession for a spin 1/2 and spin 1 state for the possible cones of orientation.
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Figure 13.  Vector model of vectors precessing in the possible cones of
orientation.  Only the spin angular momentum vectors are shown.  The magnetic
moment vectors (µµµµ) (see Figure 11) precess at the same angular frequency as the
angular momentum vectors (S), but are oriented colinear and 180o with respect
to the spin vector.  The magnitude of the angular momentum vector for the S = 1
system (right) is twice the magnitude of the angular momentum vector of the S =
1/2 system (left).

Summary
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The process of rotation of the quantum magnet's vector about an axis is
termed precession and the specific precessional frequency of a given state under
the influence of a specific field is termed the Larmor precessional frequency, ωωωω.
We note the following characteristics of the Larmor precession, all of which are
implied by eq. 14b:

(1) The value of the precessional frequency ω is proportional to the
magnitude of Ms,, g, µ and Hz, where Hz is the value of a magnetic field
interacting with the spin magnetic moment.

(2) For a given orientation and magnetic moment, the value of ω decreases
with decreasing field, and in the limit of zero field, the model requires
recession to cease and the vector to lie motionless at some indeterminate
value on the cone of possible orientations.

(3) For a given field strength, a state with several values of MS, the vector
precesses fastest for the largest absolute values of MS and is zero for states
with MS= 0.

(4) For the same absolute value of MS different signs of MS correspond to
different directions of precession, which have identical rates, but different
energies.

(4) A high precessional rate corresponds to a high energy because a high ω
implies a strong coupling field H and the magnetic energy corresponds to
the strength of the coupling field.

(5) For the same field strength and quantum state, the precessional rate is
proportional to the value of the g factor.

Some Quantitative Relationships Between the Strength of a Coupled Magnetic
Field and Larmor Frequency.

From eq. 14b and the measured value of γe (1.7 x 107 rad s-1) the following
quantitative relationship exists between the precessional frequency and the
coupling magnetic field for a "free" electron:

 ω  = 1.7 x 107 rad s-1 H, where H is in the units of Gauss  (15a)

It is also useful to consider the frequency of oscillation, ν (the frequency
for which the precessing angular momentum vector sweeps a single circle).  The
relationship between ω and ν is ν  =  ω/2π or ω  = 2πν.  The latter relationships
lead to eq. 16:

 ν  = 2.8 x 106  s-1 H, where H is in the units of Gauss  (15b)
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Since one complete cycle is equivalent to 2π radians, for a fixed field the
value of ωis always greater than the value of ν.   The frequency ν is the same
frequency associated with the oscillations of a light wave.  Through the
relationship (Eq. 16) of ∆E. ω and ν, we can readily associate the precessional
frequency, ω with the resonance oscillational frequency of radiative transitions,ν
and the energy gap between the states undergoing transitions, ∆E.

∆E  =   hν =  \ω  (16)

From eqs. 15 and 16, we can therefore compute that the frequency of
precession ω for fields of 1 G, 100 G,  10,000 G and 1,000,000 G is:  1.7 x 107 rad s-

1, 1.7 x 109 rad s-1, 1.7 x 1011 rad s-1, and 1.7 x 1013 rad s-1 (for oscillation
frequency, ν, the values are 2.8 x 106 s-1, 2.8 x 108 s-1, 2.8 x 1010 s-1, and 2.8 x 1012

s-1), respectively.  Practically speaking, applied laboratory fields whose strengths
can be varied from 0 to about 100,000 G are readily achievable, so that
precessional rates ω of the order of  1.7 x 1011 rad s-1 (ν  = 2.8 x 109 s-1) are
achievable by applying laboratory magnetic fields to a free electron spin.
Internal magnetic fields resulting from interactions with other electron spins or
nuclear spins typically correspond to magnetic fields in the range from a fraction
of a G to several hundreds of G.  In certain cases, however,  strong spin-orbit
coupling interactions or strong coupling of two electron spins, can produce
magnetic fields of the order of 1,000,000 G or larger, causing precessional
frequencies of the order of 1012 s-1 and greater.

Precession of Electron and Nuclear Spins

The value of the electron's magnetic moment µε is proportional to the
magnitude of the gyromagnetic ratio, γe (eqs. 8 and 9).  An analogous expression
holds for the magnetic moment of a nucleus, µµµµn (eq. 17, where γn is the
magnetogyric ratio for a specific nucleus, gn is the nuclear g factor and I is the
value os the nuclear spin).

µµµµn  =  gnγnI  (17)

Since the value of ω is proportional to µ, it is also proportional to γ.  From
these relationships, we can deduce that the precessional rate of an electron spin is
much faster than that of a nuclear spin of a proton, since γe is ca 1000 times larger
than γp, the gyromagnetic ratio for a proton.  The differences can be traced to the
difference in the mass of the nucleus and the electron (they both have the same
absolute value of charge and angular momentum).  To achieve the same angular
momentum as an electron, the more massive nucleus need achieve a much
smaller angular velocity.  Because of this slower velocity, the spinning nucleus
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"carries less current" as a spinning charge and therefore generates a smaller
magnetic moment.  From the definition of γ as e/2m (eq. 7 and 8), it is readily
deduced that the magnetic moment of a proton is nearly 1000 times smaller than
the magnetic moment of an electron, i.e., the ratio of magnetic moments is
proportional to the ratio of the masses for particles of the same spin (1/2 \) and
electric charge (one unit).

Eq. 18 gives the quantitative relationship of the precessional frequency,
ωp, of a proton's magnetic moment in a field Hz.  For a 13C nucleus, the
precessional frequency is approximately 4 times less than that of a proton (which
possesses the largest value of γn of any nucleus.

ωp  = 2.4 x 104  rad s-1 H, where H is in the units of Gauss  (18)

For example, at a field of 10,000 G the precessional frequency of the
proton's magnetic moment is 2.4 x 108  rad s-1, which can be compared to the
precessional frequency of 1.7 x 1011 rad s-1 at the same field strength.


