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The transformation may involve atom or electron
transfer or bond breaking or formation. It is usually an
adiabatic process. Spin is conserved

A small number of elementary
transformations are normally
sufficient to explain most photo-
reactions, which may reflect
combinations of this basic

reaction set
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Free radicals
biradicals
radical ions
carbocations
ylides
ortho-xylylenes
carbenes

(Tvoical oxamples )

Ground state species,
in principle stable but
whose lifetime is limited
by intramolecular or
intermolecular reactivity

\

The nascent reaction
intermediates usually
remember the spin state of
the precursor excited state
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EXAMPLE

Ground state Excited state Reaction Ground state
reactants reactants Intermediates |9 products
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CH, = CH,
-
CH3 CH,4 CHye
CH3
o hn o* Kisn + OH )
> » . o ProdL_Jct forming
reactions
OH
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/ Typical reactions of n,p* states \

Intermolecular
Intramolecular

Atom abstractions

Electron rich and electron
poor systems Radical-like addition
Electron or chargetransfer
as donor
as acceptor

a or b positions

« Bond cleavage




Benzophenone triplet:
a classic example

ISC

The benzophenonetriplet has
radical-like characteristics smilar
tothose of an alkoxyl radical

0,0 band 25°C, Freon-113

EMISSION INTENSITY —=
=— FLUORESCENCE

~68 keal/mol

|

- e
1700 em !

PHOSPHORE SCENCE

400

from N.J. Turro, *

. 1
450 500 550
A {nm)

Figure 5.18

Total emission of benzophe-
none at room temperature in
Freon 113 solvent. The fluo-
rescence band is dus mainly
to “delayed” fluorescence

Modern Molecular Photochemistry”, 1978
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Intermolecular hydrogen abstractions

Some hydrogen abstraction rate constants

6 -1 .
(in units of 10 M sl)

Benzophenone .
triplet (CH3)3CO
Cyclohexane 0.45 1.6
Methanol 0.21 0.29
Benzhydrol 7.5 7.2
Triethylsilane 9.6 5.7

K + RRH —— Ph;COH + /
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The Norrish Type Il reaction
n example of intramolecular hydrogen abstraction

Ph

Ao

Ph

Me? “Me

n,p*
triplet

hn
gMeVLP —— = Acetophenone (ACP)

~
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What determines rate constants for
hydrogen abstraction?

Nature of the excited state: n,p* states are radical-like and react faster
Triplet energy ....... high is better

Strength of the R-H (frequently C-H) bond broken

Number of hydrogen atoms available

Steric effects

Polar effects ..... most excited carbonyl states are electrophillic

In intramolecular examples, the ability to form an unstrained transition
state ..... 6-center is good

Entropic factors can be quite important in intramolecular cases

.......... and the usual temperature, solvent, etc.

13.10
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How are those rates determined?
Indirect approach: The Stern-Volmer equation

hn
gMeVLP ———® Acetophenone (ACP)

hn
gMeVLP ———» gMeVLP*

k
gMeVLP* —————— B ACP

gMeVLP* + Q ——— =  gVeVLP + Q*

with quencher no quencher

_ K
Face ™ Fise Kk [Q]

F ky[Ql
=1+ — =1+ k t[Q]
ACP

~
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/ How are those rates determined? \
Direct approach: Time-resolved detection

A
Quenching of Benzophenone Triplets by Melatonin |
Z

510°

410°
310°
x‘ﬂ
210°
110°

0 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
[melatonin], mM
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What determines efficiencies for hydrogen \
atom abstraction?

t—l
R,C=0* ——%  Unreactive decay

k [ ]
R,C=0* + R-H _® ,  R,C-OH + Re

KR[RH]
t~ 1+ kg[RH]

F reaction =

rate constant, concentration and lifetime

13.13




/ Photoenolization: \

an example of areversible hydrogen abstraction




/ Biradical or excited enol? \

4 )

CH,_«, OH ) Radical reactions
CcH,
C——)  Electron Transfer
Energy transfer
* =>
Ch, OH -l (b-carotene)
CH,
[ ——>4 Oxygen sensitization

- J

CH,

|
Oxygen sensitization ——> 1o, + CHy

luminescence
K at 1.27 pm /
13.15




CH,,

Cyclobutanol formation

o CHga, ,OH

Biradical |

HQ My
3

CHg

~
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Photor ear rangement of o-chlor o-a-methylacetophenone

13.17




/ Quenching of acetone fluor escence by Bu;SnH \

(singlet)
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Reactivity versusEfficiency

~

Although more reactive, singlet-excited states are |ess efficientin

abstracting hydrogen, i.e., lower yields of radicals result.

.

_l 3*

(0] H
0,

+ H-SnBus M» O/

A

+

o 1*

0
A\ e
Imax:390nm
‘ 80 %

This result accounts for the observed low chemical
reactivity of singlet-excited ketones

13.19




/Experimental singlet and triplet reactivities \

o_l*
guencher )K

singlet triplet

The higher energy of an excited

. . . SINGLET relative to the triplet
ri Itinhydri 1 4

tributyltinhydride 0 5 state results in a HIGHER
1,4-cyclohexadiene 2.1 0.63 intermolecular  REACTIVITY

. toward hydrogen donors.
isopropanol 0.091 0.010

all rate constants in units of 108 M-1s-!

. /
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Salem-type diagram

Correlation Diagram

0 o
)j\ + H-SnBu, )\ + «SnBuy

13.21




Norrish Typel reaction: \
an example of a-cleavage

CHs slo .
>=O* —W> Ve (o] + CHge
CHY CH;
PhCH, fast .
O* —_— /—O + PhCHje
PhCH; PhCH,

A free radical analogue

Chy CH,

CH, | o »=0 + CH,e
I CHj
CH,

13.22
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Ph Ph
hn o)
0
O — G
Ph Ph

Norrish Typel reactionsin cyclic systems:

processes in triphenylindanone

Biradicalsinstead
of freeradicals

Ph

d\%
N H
(~

t =220 pus

(-2H)

fast

Ph

o0

Ph
DPA




~

Electron transfer
A frequently masked reaction

Ph,CO* + (CaHs)sN ——> I Ph,CO>+ EtsN**

. +eo . .
Ph,CO-+ EtyN ] ——  Ph,COH + CHyCHN(C,H,),

a-Aminoalkyl radicals: excellent reducing agents.

Ph,CO + CH3CHN(CsHs), —— Ph,COH + CH,=CHN(C,Hs),

/

13.24




Ketones as electron donors

hn

Ph,CHCOCHPh, Ph,CHCOCHPh,**
acceptor
Ph,CHCOCHPh,"" | ——— Ph,CH: + Ph,CH* + CO
330nm 440 nm
0.015
0.012 4
0.009 1
8
0.006 4
0.003 4
Tetraphenyl acetone
on an iron-rich clay
0.000 T T T
300 400 500 600 700
Wavelength/nm
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0.2

0.8

Transient spectrum of xanthone triplet
a useful polarity probe

ethyl acetate
ethylene glycol

400 440 480 520 560 600 640 680 720
Wavelength, nm /




/Quenching of xanthonetriplet with various aromatis

Compound Ko, (MXsec)t

Benzene 7.6x 10°
Charge transfer must play a role,

Toluene 4.2 x 108 since the more electron rich
molecules are the best quenchers

Pyridine 6.3 x 108

o-Xylene 2.4 x 107

m-Xylene 3.6 x 107

p-Xylene 4.3x 107

Durene 5.5 x 107

Anisole 8.4 x 107

K Mesitylene 2.4 x 108 /

13.27




/b-CIeavage reactions. another example of bond cleavage\

@o
(

t ~1ns| t ~0.1ns

F~0 F ~0.01

F ~0.02

t ~50 nsl

t~0.16 n

F ~0.04

|

Why isthe quantum
yield so low?

13.28




/ b Phenyl ringslead to the efficient

intramolecular deactivation of triplet carbonyls

/ . %

>2 us 1-3ns
(E SCH;
OCH,
OCH,

An intramolecular example of
chargetransfer quenching

k >10 ps 100-300 ns/

13.29




/b-CIeavagereactions: another example of bond cleavage \
Hiding charge-transfer

g ? Why are the quantum
Q 9 .
yields so low?
O Because lifetimes are
controlled by

intramolecular charge
t-1ns t~0.1n9 t - 50 nsl t -0.16 ns transfer deactivation

and the nature of the
K F~0 F ~0.01 F ~0.02 E ~0.04 excited state /
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Carbonyl triplet addition to electron poor olefins \
Some general characteristics

Only S; (n,p*) forms oxetanes with cyanoethylenes

The cis-trans isomerization is a side reaction which is not
affected by quenching of the S, (n,p*) state.

Quenching of the T, (n,p*) state sensitizesreactions of
cyanoethylene, but it does not lead to oxetane (although
the reaction does take place with electron rich:ol efins).

Oxetane formation from S; (n,p*) is stereospecific.
Oxetane formation from S; (n,p*) is regiospecific.

R2
Ry R,

Ry
Rl—rk Ro O
F):O* + F/=/ B O —> R
1
1 2 R, R
2

2

13.31




Addition of acetone to an electron-rich alkene\

H3CO, CoHs

H H
CH3 G
HsC,
3 %0 O—1—CH, O — HsC,
| Y=o
HsC CZHFJ——OCHg He— HsC
+ —_— oA CZHS H —
+
CHz CHz
H3CO, H O—t—CHj3 O=—4—CHj3 H3CO, CoHs
H C2Hs —=H H —=C2H; H N
HCO  EH, H,cO A
H,CO  H
H  CuHs

« Occurs from both triplet and singlet states, but the former is less stereospecific.

* Proposed to involve a biradical

Qharge transfer from the alkene to the ketone is important /

13.32




/ Representative examplesfor n,p* systems \

Ground state Excited stat eaction Ground state
reactants reactants Iftermediates products

: Norrish Typell reaction, photoenolizations
* Atom abstractions and intermolecular photoreductions.

» Radical-like addition [ F/°7on Fchanc slectron
« Electron transfer Amine quenching, exciplex-type mechanisms, b-
aryl quenching, aromatic quenching

« Bond cleavage | Norrish Typel reaction and
b-cleavage processes

. /
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