Pulsed lasers

As part of a method to study photoinitiated chemical reactions To induce new chemistry, different from that initiated by conventional sources

As a light source, to initiate the same chemistry as with conventional sources

ASER	WAVELENGTH, nm	PULSE
Nitrogen	337	8 ns, 10 mJ
Excimer	193 (Ar/F)	5-50 ns, 300 mJ
	248 (Kr/F)	5-50 ns, 1J
	308 (Xe/Cl)	5-50 ns, 500 mJ
	351 (Xe/F)	5-50 ns, 300 mJ
Ruby	694	10 ns, 1 J
	347 (x2)	10 ns, 300 mJ
Nd/YAG	1064	5-10 ns, 0.5-5 J
	532 (x2)	5-10 ns, 500 mJ
	355 (x3)	5-10 ns, 300 mJ
	266 (x4)	5-10 ns, 150 mJ
Diode	> 700 nm	low
Dye	> 300 nm	5-20 % of pump

The technique allows the determination of the absolute rate constant for a reaction where all the reagents and all the products are invisible to the technique employed

Is there a catch ?

- The method provides no information on the nature of the reaction; for example the mode or site of attack cannot be established by this method.
- The signals observed get weaker as the reactant is added. The rates are largely derived from conditions where the growth is fast and the signal weak.

It is essential to select probes that overcome the second problem by giving intense, readily detectable signals.

The kinetics for *invisible reactions* can be determined by using the absorption from Br₂- as a probe $k_{growth} = k_0 + k_{Br}[Br] + k_{\chi}[X]$ 7 $k_x = 3.9 \times 10^7 M^{-1} s^{-1}$ 6 k_{obs}^{obs} , $10^6 s^{-1}$ 5 4 [Br⁻]= 50µM 3 2 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0 [2-propanol], M

Reate constants for reactions of bromine atoms

Quencher	kg , 10 ⁶ M ⁻¹ s ⁻¹
Methanol	0.93
Ethanol	16
1-Pentanol	11
1-Octanol	12
2-Octanol	35
2-Propanol	39
3-Pentanol	12
2-Methil-1-propane	ol 17
Dioxane	1.2
Ether	17
Toluene	66
Triethilamina	29000
p-Cresol	30000

15

Halogen abstraction reactions of excited diphenylmethyl radicals are quite common. They are known to involve a charge transfer mechanism

