Chemical Bonds Formation of Compounds from atoms

Preparation for College Chemistry
Columbia University
Department of Chemistry

Trends in the Periodic Table

Trends in the Periodic Table

Lewis Structures

VSEPR Model

Sizes of atoms and ions 18 17 Atomic radii (nm) He н 2 13 14 15 16 .037 .05 Li Be OB OC ON 0 F Ne .152 .111 .088 .077 .070 .066 .064 .070 Na Mg CI Ar .160 .099 .094 .186 .143 .117 .110 .104 K Ca Ga Se .231 .197 .122 .122 .121 .117 .114 .109 Rb Sr In .244 .215 .133 .130 .162 .140 .141 .137 Cs Ba TI At Rn .262 .217 .171 .175.146 .165 .140

Sizes of atoms and ions

lonic radii (nm)

Atomic and Ionic Radii

Decreases going across a period from left to right, increases going down group

Ionization Energy

Minimum energy necessary to remove an electron from a neutral gaseous atom in its ground state (IE > 0, ground state stable system)

$$X_{(g)} \longrightarrow X^{+}_{(g)} + e^{-} \qquad \Delta E = IE_{1}$$

$$X^{+}_{(g)} \longrightarrow X^{2+}_{(g)} + e^{-} \qquad \Delta E = IE_2$$

First Ionization Energies

Electron Affinity EA

Electron attachment energy. Energy released when a gaseous atom in its ground state gains a single electron.

Lewis Structures of Atoms

Gilbert Lewis

$$F \quad 2s^{2}p^{5} \qquad F$$

$$P \quad 2s^{2}p^{3} \qquad \vdots P$$

$$\square^{\circ} + \square^{\circ} \longrightarrow \square \square \qquad \square - \square$$

$$\vdots F \quad + \vdots F \qquad \longrightarrow F \qquad \vdots F \qquad \square F = F \qquad \square$$

The Octect Rule

$$\vdots F \cdot + \square^{\circ} \longrightarrow \vdots F \cup \square$$

$$\vdots O \cdot + 2 \square^{\circ} \longrightarrow \square$$

In H_2O and HF, as in most molecules and polyatomic ions, nonmetal atoms except H are surrounded by 8 electrons (an octet). Each atom has a noble gas electronic configuration (ns^2p^6).

Ionic Bond. Electron Transfer

$$F^{-}$$
 $2s^2p^6$ F^{-}

$$Na + 2s^2p^6$$
 $[Na]^+$

$$(Na)^+$$
 $(F)^-$

Ionic Bond. Electron Transfer

Ionicity vs. Covalency

Potential Energy Diagram

Electrostatic forces in the H₂ molecule

electron repulsion (destabilization)

nuclear repulsion (destabilization)

H₂ Electron Configuration: Bonding and Non-Bonding Orbitals

Two s atomic orbital = $Two \square molecular orbital (MO)$

One bonding, one antibonding.

Covalent Bond. Sharing e

Only bonding MO shown

Collinear orbitals form [] bond

 $Two p AO = Two \square MO$

Only bonding MO shown

Coplanar orbitals form [] bond

Four p AO = Two [] MO, and two [] [] []
Only bonding MO shown

He₂ Electron Configuration

Linus Pauling Electronegativity

Count valence electrons available.

number of valence electrons contributed by nonmetal atom is equal to the last digit of its group number in the periodic table.

$$(H=1)$$

Add electrons to take into account negative charge.

Ex.

 $OCl^{-}ion: 6(O) + 7(Cl) + 1(charge) = 14 \ valence \ e^{-}$ $CH_{3}OH \ molecule: 4(C) + 4(H) + 6(O) = 14 \ valence \ e^{-}$

Draw skeleton structure using single bonds Note that carbon almost always forms four bonds.

Central atom is written first in formula.

Terminal atoms are most often H, O, or a halogen.

$$Ex.$$
 H
 $O - Cl$
 $H - C - O - H$
 H

Subtract two electrons for each single bond

$$O-Cl^{-}$$
 ion: $14-2 = 12$ valence e^{--} left

CH
$$_3$$
OH molecule: $14-10 = 4$ valence e^- left

Distribute remaining electrons to give each atom a noble gas structure (if possible).

Too Few Electrons? Form multiple bonds

Ex. What is the structure of the NO_3 ion?

$$valence\ e^{-} = 5(N) + 18\ (3O) + 1(charge) = 24\ e^{-}$$

Nitrate Ion (cont.)

 $valence \ e^{-} \ left = 24 - 6 \ (3 \ single \ bonds) = 18 \ e^{-}$

Adding a double bond and rearranging:

Resonance Structures

Molecular Geometry

Molecular Geometry. VSEPR

- 1. Electron pairs (lone and bonding pairs) around a central atom tend to be oriented so as to be as far apart as possible to minimize their repulsions
- 2. The molecular geometry is hence determined by the relative locations of the electron pairs
- 3. The SN (Steric Number) of the central atom is used to find the geometry that applies

Molecular Geometry

In XY_n molecules in which there are no lone pairs, the SN is used to predict geometry

$$BeF_2$$
 linear $(SN = 2)$

$$BF_3$$
 trigonal planar $(SN = 3)$

$$CF_4$$
 tetrahedral $(SN = 4)$

 PF_5 triangular bipyramid (SN = 5)

Molecular Geometry

Species type	Orientation of electron pairs	Predicted bond angles	Example	Ball and stick model
AX ₂	Linear	180°	BeF ₂	180°
AX ₃	Triangular planar	120°	BF ₃	120°
AX ₄	Tetrahedron	109.5°	CH ₄	109.5°

VSEPR model

Molecule	Lewis Str.	Pairs of e-	electron arrangem.	Molecular Shape
H_2S	H - S - H	4	tetrahedral	bent
CCl ₄	Cl Cl C Cl Cl	4	tetrahedral	tetrahedral