The Gaseous State of Matter

Preparation for College Chemistry Columbia University
Department of Chemistry

Chapter Outline

KMT

Gas Laws
Ideal Gas Equation
Gas Stoichiometry
Air Pollution

Preliminary Observations

Molar mass of water: 18 g /mole
6.02×10^{23} molecules weigh $18 g$

Density of water: 1g/cc
18 g liquid water occupies $18 m L$

18 g gaseous water occupies $22,400 \mathrm{~mL}$

Kinetic Molecular Theory of Gases

Kinetic Molecular Theory of Gases

Distribution of Molecular Speeds Maxwell-Boltzmann Distribution

Graham's Law of Effusion

At the same T and P, the rates of Effusion of two gases are inversely proportional to their densities or molar masses.

$$
\frac{\mathbf{R} a t e_{g a s A}}{\mathbf{R} a t e_{g a s B}}=\sqrt{\frac{d_{B}}{d_{A}}}=\sqrt{\frac{M_{B}}{M_{A}}}
$$

Naturally occurring Uranium : U-235 / U238 = 1 / 140

$$
(\mathrm{g})
$$

2nd step: Diffusion through thousands of membranes (cascades)

Gas
Vacuum

3rd step: $\quad{ }^{235} \mathbf{U F}_{6} \longrightarrow{ }^{235} \mathbf{U} \quad$ Fully enriched weapons-grade Uranium

$$
\begin{aligned}
& \text { 1st step: } \mathrm{U}+6 \mathrm{~F} \longrightarrow\left(235 \mathrm{UF}_{6}>238 \mathrm{UF}_{6}\right) \\
& \frac{\mathbf{R}_{235 \square \mathrm{FF}_{6}}}{\mathbf{R}_{238 \mathrm{UUF}}^{6}}{ }^{2}=\sqrt{\frac{\mathbf{m}_{238 \square F_{6}}}{\mathbf{m}_{235 \square U F_{6}}}}=\sqrt{\frac{352}{349}}=1.0043
\end{aligned}
$$

State Variables

$$
V=\text { volume }\left(\text { liters, } \mathrm{cm}^{3}, \mathrm{~m}^{3}\right)
$$

$T=$ temperature (in K)

P = pressure (atmospheres, $\mathbf{m m H g}, \mathbf{k P a}$)

Boyle's Law

At Constant T For an Ideal Gas

Boyle's Law

At Constant T For an Ideal Gas

Boyle's Law

At Constant T For an Ideal Gas

$$
\square_{2}>\square_{1}
$$

Charles' Law At Constant P for an Ideal Gas

$$
\frac{V_{1}}{V_{2}}=\frac{T_{1}}{T_{2}}
$$

Gay-Lussac's Law

At Constant V for an Ideal Gas

Combined Gas Laws

Charles' Boyle's

$$
\begin{gathered}
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \\
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} V_{1}=P_{2} V_{2} \\
V_{2}=\frac{V_{1} P_{1} T_{2}}{P_{2} T_{1}}
\end{gathered}
$$

STP Conditions

Reference Points for T and P for comparison

Standard Temperature: $273.15 \mathrm{~K}=0^{\circ} \mathrm{C}$

Standard Pressure: 1 atm

Dalton's Law of Partial Pressures

$$
P_{t o t}=P_{1}+P_{2}+P_{3}+\ldots
$$

where P_{1} is the partial pressure of gas 1, etc...

$$
\begin{gathered}
P_{n}=X_{n} P_{\text {total }} \\
X_{n}=\frac{n_{n}}{n_{1}+n_{2}+n_{3}}+\ldots \\
P_{\text {gas }}=P_{\text {total }}-P_{H_{2} O} \text { (table 11.3 p. 387) }
\end{gathered}
$$

where $\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}$ is the vapor pressure of water at the specified temperature. Most often used in collection of insoluble gases over water. In open systems, $\boldsymbol{P}_{\text {total }}=\boldsymbol{P}_{\text {atm }}$

1809

Gay-Lussac's Law of combining volumes

"When measured at the same T and P, the ratios of the V of reacting gases are small whole numbers"

1811

Avogadro's Law

"Equal volumes of different gases at the same T and P contain the same number of molecules"

Consequences of Avogadro's Law

1. Explanation of Gay-Lussac's combining volumes law. Diatomic nature of elemental gases.
2. Method for determining molar masses of gases. The molar Volume.
3. Firm foundation of KMT: gases consists of microscopic particles

Density of Gases

$$
\boldsymbol{d}=\frac{\boldsymbol{m}}{\boldsymbol{V}} \quad \text { But } \boldsymbol{V}=\boldsymbol{f}(\mathbf{P}, \boldsymbol{T}) \quad \square \quad d_{\text {gas }}^{T, P}
$$

Gas	M(g/mol $)$	STP $d(g / L)$	Gas	M(g/mol) $)$	STP $d(g / L)$
H_{2}	2.016	0.900	$\mathrm{H}_{2} \mathrm{~S}$	34.09	1.52
CH_{4}	16.04	0.716	HCl^{2}	36.46	1.63
NH_{3}	17.03	0.760	$\mathrm{~F}_{2}$	38.00	1.70
$\mathrm{C}_{2} \mathrm{H}_{2}$	26.04	1.16	CO_{2}	44.01	1.96
HCN	27.03	1.21	$\mathrm{C}_{3} \mathrm{H}_{8}$	44.09	1.97
CO	28.01	1.25	O_{3}	48.00	2.14
$\mathrm{~N}_{2}$	28.02	1.25	SO_{2}	64.07	2.86
air	28.9	1.29	Cl_{2}	70.90	3.17
O_{2}	32.00	1.43			

Ideal Gas Equation Equation of State

$V \frac{1}{P}$
V n

$$
P V=n R T
$$

V $\quad T$

$$
P V=\frac{m}{M} R T \quad M=\frac{m R T}{P V} \quad d=\frac{P M}{R T}
$$

For one mole of a gas at STP, R constant:

$$
R=\frac{(1 \mathrm{~atm})(22.4 L)}{273 \mathrm{~K}}=0.082 \frac{\mathrm{~L}-\mathrm{atm}}{\mathrm{~mol}-\mathrm{K}}
$$

Ideal Gas Equation

The ideal gas constant has energy/mol degrees dimensions

$$
\begin{aligned}
& {[R] }=\frac{[\text { pressure }][\text { Volume }]}{[\text { temperature }][m o l]}=\frac{[\text { force }][\text { volume }]}{[\text { area] }] \text { temperature }][\text { mol }]} \\
& {[R]=\frac{[\text { force] }][\text { length }]}{[\text { temperature }][m o l]}=\frac{[\text { energy }]}{[\text { temperature }][m o l]} } \\
& R=8.134 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \sim 2 \mathrm{Cal} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}
\end{aligned}
$$

Gas Stoichiometry

Concentrated nitric acid acts on copper and produces nitrogen dioxide and dissolved copper. 6.80 g Cu is consumed and NO_{2} is collected at a pressure of .970atm and a temperature of $45^{\circ} \mathrm{C}$ (318 K) . Calculate the volume of NO_{2} produced.

$$
\mathrm{Cu}(\mathrm{~s})+4 \mathrm{H}^{+}+2 \mathrm{NO}_{3}^{-}(\mathrm{aq}) \longrightarrow \mathrm{Cu}^{+2}(\mathrm{aq})+2 \mathrm{NO}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}
$$

$$
6.80 \mathrm{~g} \mathrm{Cu} \mathrm{x} \frac{1 \mathrm{~mol} \mathrm{Cu}}{63.55 \mathrm{~g} \mathrm{Cu}} \times \frac{2 \mathrm{~mol} \mathrm{NO}_{2}}{1 \mathrm{~mol} \mathrm{Cu}}=0.214 \mathrm{~mol} \mathrm{NO}_{2}
$$

$$
\boldsymbol{V}=\frac{\boldsymbol{n} \boldsymbol{R} \boldsymbol{T}}{\boldsymbol{P}}=5.76 \mathrm{~L}_{\underline{\mathrm{NO}_{2}}}^{\underline{2}}
$$

Real Gases

Follow the ideal gas law at sufficiently low densities
\square Gas molecules attract one another
\square Gas molecules occupy a finite volume
Both factors increase in importance when the molecules are close together (high P. low T).

Deviations from ideality are quantified by the Compressibility factor z

$$
z=\frac{P V}{n R T}
$$

Real Gases

Intermolecular Forces

Nitrogen at several T

Van der Waals Equation (1873)

$$
\left.B+a \frac{n^{2}}{V^{2}}\right](V \square n b)=n R T
$$

$b=$ constant representing volume excluded per mole of molecules
$a=$ depends on the strength of attractive forces
n^{2}
Proportional to reduction of wall collisions $\overline{V^{2}}$ due to cluster formation.

Air Pollution

Upper and Lower Atmosphere Ozone

Sulfur Dioxide

Nitrogen Oxides

Green House Effect

Upper atmosphere Ozone

$\mathrm{O}_{2} \xrightarrow{\mathrm{~h} \square} 2 \mathrm{O}$
$\mathrm{O}_{2}+\mathrm{O} \longrightarrow \mathrm{O}_{3} \quad$ Allotropic Transformation
$\mathrm{O}_{3} \xrightarrow{\mathrm{~h} \square} \mathrm{O}_{2}+\mathrm{O}+$ heat Ozone shield
$\mathrm{CCl}_{3} \mathrm{~F} \xrightarrow{\mathrm{~h} \square} \mathrm{CCl}_{2} \mathrm{~F}^{\cdot}+\mathrm{Cl} \cdot$ Ozone Layer Destruction

$$
\mathrm{Cl}^{\cdot}+\mathrm{O}_{3} \longrightarrow \mathrm{ClO}^{\cdot}+\mathrm{O}_{2} \quad \text { Chain propagation }
$$

$$
\mathrm{ClO}^{\cdot}+\mathrm{O} \longrightarrow \mathrm{O}_{2}+\mathrm{Cl}
$$

Tropospheric Chemistry

$\mathrm{NO}_{2} \xrightarrow{\mathrm{~h} \square} \mathrm{NO}+\mathrm{O} \quad$ Photochemical Smog
$\mathrm{O}_{2}+\mathrm{O}+\mathrm{M} \longrightarrow \mathrm{O}_{3}<3$ ppm Ozone alert,
$M=N_{2}$ or O_{2}
$\mathrm{SO}_{2}+\mathrm{OH} \longrightarrow \mathrm{SO}_{2} \mathrm{OH} \quad$ Radical Oxidation
$\mathrm{SO}_{2} \mathrm{OH}+\mathrm{O}_{2} \longrightarrow \mathrm{SO}_{3}+\mathrm{OOH} \quad$ Acid Rain Precursor
$\mathrm{OOH} \longrightarrow \mathrm{O}+\mathrm{OH}$

http://www.epa.gov/globalwarming/emissions/index.html The Greenhouse Effect

Some solar radiation is reflected by the earth and the
Solar radiation patses through the clear atmosphere

Most radiation is absorbed by the earth's surface and warms it

Some of the infrared radiation passes through the atmosphere, and some is absorbed and reemitted in all directions by greenhourse gas molecules. The effect of this is to warm the earth's surface and the lower atmosphere.

Infraiced ratiston is en nitted from theteart sisurae

http://news6.thdo.bbc.co.uk/hi/english/special report/19
97/sci/tech/global warming/newsid 33000/33557.stm

