Early Atomic Theory

Atoms, Molecules, and Ions

Preparation of College Chemistry Luis Avila Columbia University Department of Chemistry

Atoms

Atomic theory

Components of the Atom

Atomic Number

Mass Number

Isotopes

Atomic Theory. Early Thoughts

EMPEDOCLES:

•Matter is composed of four elements: EARTH, AIR, WATER, FIRE

LEUCIPUS of Miletus and his disciple **DEMOCRITUS** of Abdera:

•Nature consists solely of an infinite number of indivisible particles, having shape, size, impenetrability, and no further properties. These particles move through an otherwise empty space.

•The shape, size, location, and movement of these particles make up literally all of the qualities, relations, and other features of the natural world.

PLATO and ARISTOTLE reinforces:

•Matter is composed of four elements: EARTH, AIR, WATER, FIRE

384 - 270 BC

470 BC

GALILEO GALILEI:

•Appearance of a new substance through chemical change involves rearrangement of parts too small to be seen.

FRANCIS BACON:

•Heat might be a form of motion of small particles.

17th Century

ROBERT BOYLE and ISAAC NEWTON:

•Used atomic concepts to interpret physical phenomena.

1500's

1500's

1803 - 1810

Dalton's Model of the Atom

- 1. Elements consist of tiny particles called atoms.
- 2. Atoms of the same element are alike in mass and size.
- 3. Atoms combine to form compounds in simple numerical ratios, such as 1:2, 2:3, etc.
- 4. Atoms of two elements may combine in different ratios to form more than one compound.

Consequences of Dalton's Law

The Law of conservation of Mass:

"There is no detectable change in mass in an ordinary chemical rxn."

The Law of Constant Composition:

"A compound always contains the same elements in the same proportions by mass."

The Law of Multiple Proportions:

"The masses of one element that combine with a fixed mass of the second element are in a ratio of small whole numbers."

Composition of Compounds

A compound always contains two or more elements combined in a definite proportion by mass.

Atoms of two or more elements may combine in different ratios to produce more than one compound.

	Water	Hydrogen Peroxide
Percent H	11.2	5.9
Percent O	88.8	94.1
Atomic Composition	2H + O	2H+2 O

Certain substances when dissolved in water can conduct an electric current.

Water is not necessary IONIC SUBSTANCES conduct electricity when melted.

CATIONS: POSITIVE IONS, that "travel" to the CATHODE (negative electrode)

ANIONS: NEGATIVE IONS that "travel" to the ANODE (positive electrode).

G. J. STONEY:

There must be some FUNDAMENTAL unit of electricity associated with atoms: The ELECTRON.

1891

1830's

1887

1897

J.J Thomson Discovered the Electron

The first sub-atomic particle

Cathode rays are ELECTRONS (e⁻) particles with a negative charge.

Cathode ray tube

The Nuclear Atom

1913

"It was as though you had fired a fifteen-inch shell at a piece of tissue paper and it had bounced back and hit you."

ERNEST RUTHERFORD and HANS GEIGER with the apparatus for counting alpha particles Manchester, 1912

Rutherford's scattering experiment

Transmitted beam containing most of the alpha particles with only small deflection

Gold foil —

A few alpha particles are scattered at large angles

Source of narrow beam of fast moving α particles

Zinc sulfide screen

The Nuclear Atom

Arrangement of Subatomic Particles

Atomic Number, Z

Equals number of protons in nucleus

Equals number of electrons in neutral atom

Location of the element in the Periodic Chart

Characteristic of a particular element

Properties of Subatomic Particles

Particle	Mass(kg)	Relative	Charge
		Mass (amu)	
proton	1.67262 x 10 ⁻²⁷	1	+ 1
neutron	1.67493 x 10 ⁻²⁷	1	0
electron	0.00091 x 10 ⁻²⁷	0.0005486	- 1

Mass Number, A

Atoms of the same element can differ in mass number

A = number of protons + number of neutrons

Isotope	# Protons	# Neutrons	Z	Α	Symbol
Carbon-12	6	6	6	12	${}^{12}_{6}C$
Carbon-14	6	8	6	14	$^{14}_{6}C$

Nuclei Representation

A - Z = number of neutrons

 ${}^{A}_{Z}E$

Precise determination of the masses of individual atoms

The mass spectrometer

Mass spectrum of chlorine

Atomic Mass from Isotopic Composition

Isotope	Atomic Mass (amu)	Natural Abundance (%)
Ne-20	20.00	90.48
Ne-21	21.00	0.27
Ne-22	22.00	9.25

$$A.M. = (A.M.isotope_1 \times \frac{\%}{100} + A.M.isotope_2 \times \frac{\%}{100} + \dots$$

Meaning of Atomic Masses

A nickel atom is 58.69 / 40.08 = 1.464 times as heavy as a calcium ion

It is 58.69 / 10.81 = 5.29 *times as heavy as a boron ion*

Element	В	Ca	Ni
Atomic Mass	10.81	40.08	58.69
(amu)			

Atomic Mass from Isotopic Composition

20.00 (0.9048) + 21.00 (0.0027) 22.00 (0.0925)

20.18 amu

A.M. Ne = 20.18g/mol

Meaning of Atomic Masses

- Give relative masses of atoms based on C-12 scale.
- The Most common isotope of carbon is assigned an atomic mass of 12 amu.
- The amu is defined as 1/12 of the mass of one neutral carbon atom

http://www.c14dating.com/int.html

For light (Z < 20) isotopes the stable ratio is 1.0; with heavier isotopes it increases to 1.5. There are no stable isotopes for elements of Z > 83 (Bi).

Ions

Formation of Monatomic Ions

Charges of Monatomic Ions

Polyatomic Ions

Formulas

Formation of Monatomic Ions

Na atom $(11p^+, 11e^-) \longrightarrow Na^+ ion (11p^+, 10e^-) + e^-$

 $F \text{ atom } (9p^+, 9e^-) + e^- \longrightarrow F^- \text{ ion } (9p^+, 10e^-)$

Nucleus remains unchanged

Charges of some metallic ions (non-metals, anions)

2/2

Charges of some metallic ions (metals, cations)

1/2

Polyatomic Ions

Names and formulas

General structure

Polyatomic Ions

Cations

Anions

Ammonium NH_4^+ Permanganate MnO_4^- Mercury(I) Hg_2^{+2} Peroxide $O_2^{-2}^-$

Acetate

 $C_2 H_3 O_2^{-1}$

The prefixes and suffixes used to name oxyanions are related to the valence of the element contained in the formula

perate	-ate	-ite	hypo– –ite
X0 ₄ -	X0 ₃ -	X0 ₂ -	XO-

Ex:	Potassium Permanganate	KMn0 ₄
	Potassium Manganate	KMnO ₃
	Ammonium hypochlorite	NH₄CIO
	Mercury(I) iodite	(Hg ₂)(IO ₂) ₂
	Mercury(II) bromate	Hg(BrO ₃) ₂
	Iron(III) periodate	Fe(10 ₄) ₃

Writing Ionic Compound Formulas

Apply principle of electrical neutrality

	Anion	peroxide	oxide	dichromate
Cation	HCO ₃ [−]	0 ₂ ²⁻	02-	Cr ₂ 0 ₇ ²⁻
Ammonium NH₄⁺	NH₄HCO ₃	(NH ₄) ₂ O ₂	(NH ₄) ₂ O	(NH ₄) ₂ Cr ₂ O ₇
Mercury(I) Hg ₂ ²⁺	$Hg_2(HCO_3)_2$	Hg ₂ O ₂	Hg ₂ O	Hg ₂ Cr ₂ O ₇
Sodium Na⁺	NaHCO ₃	Na ₂ O ₂	Na ₂ O	Na ₂ Cr ₂ O ₇
Calcium Ca ²⁺	Ca(HCO ₃) ₂	CaO ₂	CaO	Ca Cr₂O ₇

Naming Ionic Compounds Name cation followed by anion

For transition metals cations the charge is indicated by Roman numeral when using the Stock system

NH ₄ Br	ammonium bromide
Na ₂ SO ₄	sodium sulfate
$Fe(NO_3)_3$	iron (III) nitrate

Oxoanions of nitrogen, sulfur and chlorine

Nitrogen	Sulfur	Chlorine
NO ₃ - nitr <i>ate</i> NO ₂ - nitr <i>ite</i>	SO ₄ ^{2–} sulf <i>ate</i> SO ₃ ^{2–} sulf <i>ite</i>	ClO ₄ ⁻ <i>per</i> chlor <i>ate</i> ClO ₃ ⁻ chlor <i>ate</i> ClO ₂ ⁻ chlor <i>ite</i> ClO ⁻ <i>hypo</i> chlor <i>ite</i>

Greek prefixes used in nomenclature

Number*	Prefix	Number	Prefix
2	di	6	hexa
3	tri	7	hepta
4	tetra	8	octo
5	penta	9	nona
*The prefix m is seldom us	ono (1) ed	10	deca

Binary Molecular Compounds

Use of Greek prefixes

SF₆ sulfur hexafluoride

 N_2O_3 dinitrogen trioxide

 H_2O dihydrogen monoxide

Types of Acids

- Binary Acids:
 –hydrochloric acid
- Oxoacids:
 - -ate salt ic acid
- Examples:
 - $-HClO_4$ hyperchloric acid $-Ca(ClO_4)_2$ calcium perchlorate

