

MARTIN G. LOW, DEPT. PHYSIOLOGY

Q: WHY DO VERTEBRATES HAVE AN ENDOCRINE SYSTEM?

A: ALTHOUGH IT ALLOWS EXTREMELY RAPID COMMUNICATION THE "HARD WIRING" OF THE NERVOUS SYSTEM IS TOO "EXPENSIVE", INEFFICIENT (AND UNNECCESARY) FOR THE DELIVERY OF MOLECULAR SIGNALS TO EVERY CELL IN THE BODY. THE CARDIOVASCULAR SYSTEM, WHICH IS MOSTLY DEVOTED TO TRANSPORTING OXYGEN AND NUTRIENTS, CAN ALSO PROVIDE A HIGHLY EFFICIENT, BUT RELATIVELY SLOW SYSTEM FOR DELIVERING "SOLUBLE" MESSENGER MOLECULES TO ESSENTIALLY EVERY CELL IN THE BODY.

HOWEVER TO ENSURE FIDELITY AND SPECIFICITY OF THE SIGNALLING PROCESS THESE "SOLUBLE MESSENGERS" MUST BE GUIDED TO THE CORRECT DESTINATION BY A "MOLECULAR ADDRESS"

STRUCTURE & FUNCTION OF MAJOR HORMONES				
HORMONE	M.W.	CHEMICAL STRUCTURE	MAJOR FUNCTION	
TRIIODOTHYRONINE (T3) THYROXINE (T4)	<1000 <1000	IODINATED TYROSINE DERIVATIVES	GROWTH, METABOLISM & DEVELOPMENT	
STEROIDS	<1000	CHOLESTEROL DERIVATIVES		
ARG-VASOPRESSIN (ADH)	~1000		ANTI-DIURETIC HORMONE	
OXYTOCIN	~1000	(3-3) EIRRED CTCEIC NORAFEFTIDES	SUCKLING RESPONSE	
GLUCAGON	~3,500	29-RESIDUE PEPTIDE	PLASMA GLUCOSE	
CALCITONIN	~4,000	32-RESIDUE PEPTIDE	PLASMA Ca	
ADRENOCORICOTROPHIC HORMONE (ACTH)	4,500	39-RESIDUE PEPTIDE DERIVED FROM 31K POMC PRECURSOR	STIMULATES RELEASE OF CORTICAL STEROIDS	
INSULIN	6,000	51-RESIDUE PEPTIDE WITH (S-S)-LINKED A AND B CHAINS	PLASMA GLUCOSE	
PARATHYROID HORMONE	9,500	84-RESIDUE PEPTIDE	PLASMA CALCIUM	
PROLACTIN (PRL)	23,000	198 /191 RESIDUE GLYCOPROTEINS WITH	LACTOGENESIS	
GROWTH HORMONE (GH)	22,000	~ 80% HOMOLOGY	GROWTH / METABOLISM	
THYROID-STIMULATING HORMONE (TSH)	28,000	GLYCOPROTEINS WITH:	STIMULATES RELEASE OF T3 AND T4	
LUTEINZING HORMONE (LH)	30,000		REGULATION OF	
FOLLICLE-STIMULATING HORMONE (FSH)	30,000	AND VARIABLE BETA SUBUNIT	SPERMATOGENESIS AND OOGENESIS	
CHORIONIC GONADOTROPHIN (hCG)	57,000	LEPTIN: 16kDa 139-RESIDUE PEPTIDE	MAINTENANCE OF CORPUS LUTEUM	

CELL SURFACE RECEPTO	ORS AND THEIR TRANSDUCERS: GROUP I		
RECEPTOR / HORMONE	MAJOR TRANSDUCERS		
_1, _2, _3 - ADRENERGIC	G PROTEIN : CYCLASE		
_1- ADRENERGIC	G PROTEIN : PLC		
_2- ADRENERGIC	G PROTEIN : PLC AND CYCLASE		
M1- MUSCARINIC	G PROTEIN : PLC		
D2-DOPAMINERGIC	G PROTEIN : PLC AND CYCLASE		
HISTAMINE	G PROTEIN : PLC		
BRADYKININ	G PROTEIN : PLC		
ANGIOTENSIN	G PROTEIN : PLC		
VASOPRESSIN	G PROTEIN : PLC		
GLUCAGON	G PROTEIN : AND CYCLASE		
CALCITONIN	G PROTEIN : AND CYCLASE		
PARATHYROID HORMONE	G PROTEIN : AND CYCLASE		
PROSTAGLANDIN E2	G PROTEIN : AND CYCLASE		
LEUKOTRIENES	G PROTEIN : PLC		

CELL SURFACE RECEPTORS TRANSDU	CELL SURFACE RECEPTORS TRANSDUCERS AND MESSENGERS?: GROUP II			
RECEPTOR / HORMONE	MAJOR TRANSDUCERS			
THROMBOXANE A2	G PROTEIN : PLC			
THYROTROPIN-RELEASING HORMONE (TRH)	G PROTEIN : PLC			
THYROID-STIMULATING HORMONE (TSH)	G PROTEIN : CYCLASE			
FOLLICLE-STIMULATING HORMONE (FSH)	G PROTEIN : CYCLASE			
LUTEINIZING HORMONE (LH)	G PROTEIN : CYCLASE			
EPIDERMAL GROWTH FACTOR (EGF)	RECEPTOR TYROSINE KINASE: PLC			
PLATELET-DERIVED GROWTH FACTOR (PDGF)	RECEPTOR TYROSINE KINASE; PLC			
INSULIN	RECEPTOR TYROSINE KINASE; IRS-1			
INSULIN -LIKE GROWTH FACTOR 1 (IGF-1)	RECEPTOR TYROSINE KINASE; IRS-1			
GROWTH HORMONE (GH)	NON-RECEPTOR TYROSINE KINASE; JAK/Stat			
PROLACTIN (PRL)	NON-RECEPTOR TYROSINE KINASE; JAK/Stat			
ACTIVIN/INHIBIN (TGFFAMILY)	RECEPTOR Ser/Thr KINASE:Smad			

DOMAIN	NAME	MOTIF RECOGNIZED
src homology 2	SH2	pY-X-X-X
phosphotyrosine-binding"	PTB	N-P-X-pY-
src homology 3	SH3	"proline-rich region"
Pleckstrin Homology	PH	PI-P _x headgroups

PROTEIN	ARRANGEMENT OF BINDING DOMAINS
PROTEIN	AND CATALYTIC SITES
src kinase	MyrSH3SH3SH2Tyr kinase
Btk	PHProSH3SH2Tyr kinase
Shc	PTBSH2- ('Collagen-like')
Grb-2	SH3SH2SH3
Shp-2 (<i>Syp</i>)	SH2SH2PTPase
PLCα	?
PLCβ	PHPLC
PLCγ	PHPLCSH2SH2SH3PLC
PLCð	PHPLCPLC
РКВ	PH Ser/Thr kinase
p120Ras-GAP	SH2SH3SH2PHGAP

HORMONAL REGULATION OF METABOLISM					
	LIPOLYSIS	PROTEIN DEGRADATION	GLUCOSE SYNTHESIS	LIVER GLYCOGEN	PLASMA GLUCOSE
INSULIN	Ļ	Ļ	ţ	Ť	Ļ
CORTISOL	Ť	t	Ť	Ť	t
GLUCAGON	t	••••	t	Ļ	t
GROWTH HORMONE	t	Ļ	Ť	ţ	t
CATECHOLAMINES	1		↑ (α-1)	↓ (β)	β
LEPTIN	↑ ?				1

BINDING AFFINITIES OF STEROIDS TO PLASMA PROTEINS					
HORMONE	CORTISOL BINDING PROTEIN (CBP)	SEX HORMONE BINDING GLOBULIN (SHBG)	ALBUMIN		
CORTISOL	76	1.6	0.003		
CORTISONE	7.8	2.7	0.005		
ESTRADIOL	0.06	680	0.06		
PREGNENOLONE	0.18	14	0.06		
PROGESTERONE	24	8.8	0.06		
17OH-PROGESTERONE	55	9.9	0.4		
TESTOSTERONE	5.3	1600	0.04		

THYROID HORMONES						
HORMONE	RELATIVE POTENCY	PRODUCTION (µg/day)	PLASMA CONCENTRATION (µg/dL)	BOUND TO PLASMA PROTEINS (%)	t_ (days)	
T ₄	+	80- 90	8	99.95	6-7	
T ₃	****	4-8 (24) [*]	0.3	99.7	1-3	
rT ₃	-	2-3 (27) *	0.04	99.8	0.1	
rT ₃	-	2-3 (27) *	0.04	99.8	(

CALCITONIN IS SECRETED FROM THE THYROID PARAFOLLICULAR CELLS

BUT IS CALCITONIN AN IMPORTANT PHYSIOLOGICAL SUBSTANCE?

The observation that calcitonin (CT) at supraphysiological doses is hypocalcenic, led to the mistaken conclusion that it was important for calcium homeostasis and this idea has persisted to this day. Despite these findings there is no readily apparent pathology due to CT excess or deficiency and there is no evidence that circulating CT is of substantial benefit to any mammal.......

Mammalian CT at physiological doses is not essential and very likely the CT gene has survived because of the gene's alternate mRNA pathway to produce calcitonin-gene-related peptide found in neural tissues.

HIRSCH, PF and BARUCH H, ENDOCRINE 2003, 201-208