Equations and Sample Problems

Work

work $=$ force Cdisplacement $=\mathrm{fC} \Delta x=\mathrm{P} \quad \mathrm{CAC} \Delta \mathrm{x}=\mathrm{P} \quad \mathrm{C} \Delta \mathrm{V}$
where $\mathrm{P}=$ pressure, $\mathrm{A}=$ area, $\mathrm{V}=$ volume
The concept of $\mathrm{P} \Delta \mathrm{V}$ work helps us understand function and energy requirements of lung, heart We can also apply the concept to chemical work of cells and tissues.
Chemical work $=\pi \Delta \mathrm{V}=\pi \Delta(\mathrm{n} / \mathrm{C})=\mathrm{CRT} \mathrm{n} \Delta \mathrm{C} / \mathrm{C}=\mathrm{RT} \mathrm{n} \log _{\mathrm{e}} \mathrm{C} / \mathrm{C}^{\prime}=2.3 \mathrm{RT} \mathrm{n} \log _{10} \mathrm{C} / \mathrm{C}^{\prime}$
where $\pi=$ osmotic pressure and $n=$ number of moles

Osmotic Pressure

$$
\pi=\mathbf{C} \text { CR CT }
$$

where C is in moles/ L
$\mathrm{R}=62.3 \mathrm{~L}(\mathrm{mmHg})$ moles $^{-1} \mathrm{deg}^{-1}=$ molar gas constant
$\mathrm{T}=\operatorname{deg}($ absolute scale $)=273^{\circ}+{ }^{\circ} \mathrm{C}$

Problem: Calculate π (in mm Hg) at $37^{\circ} \mathrm{C}$ for a 5% glucose (M.W. 180) solution.
5% glucose (M.W. 180) is $5 \mathrm{~g} / 100 \mathrm{ml}=50 \mathrm{~g} / \mathrm{l}=(50 / 180)$ moles $/ \mathrm{l}=0.28 \mathrm{moles} / \mathrm{l}$.

$$
\begin{aligned}
\boldsymbol{\pi} & =\mathbf{C} \text { CR CT } \\
& =0.28 \mathrm{moles} / \mathrm{l} \text { C62.3 } \mathrm{L}(\mathrm{mmHg}) \mathrm{moles}^{-1} \mathrm{deg}^{-1} \mathrm{C} 310 \mathrm{deg} \\
& =5408 \mathrm{mmHg}
\end{aligned}
$$

Problem: Use the equation work $=2.3 \mathrm{CR} \mathrm{CT} \mathrm{C} \mathbf{n C \operatorname { l o g } \mathrm { C } / \mathrm { C } ^ { \prime } , ~}$
to calculate the chemical work of parietal secretion for the following example
$\left[\mathrm{H}^{+}\right]$
$\left[\mathrm{Cl}^{-}\right]$
[K^{+}]
parietal secretion (C) . 159 M .166 M .0074 M
blood plasma (C') $4 \mathrm{Q} 0^{-8} \mathrm{M} .105 \mathrm{M} \quad .0047 \mathrm{M}$

	C	C^{\prime}	C/C' ${ }^{\text {' }}$	$\log \mathbf{C / C}{ }^{\text {' }}$	n (moles)	n Clog C/C ${ }^{\text {, }}$
$\left[\mathrm{H}^{+}\right]$.159M	$4 \mathrm{C} 0^{-8} \mathrm{M}$	3.98 Q 0^{6}	6.599	. 159	1.049
$\left[\mathrm{Cl}^{-}\right]$.166M	. 105 M	1.581	. 199	. 166	. 033
$\left[\mathrm{K}^{+}\right]$.0074M	.0047M	1.574	. 197	. 0074	. 015
					Sum $=$	1.097 moles

$$
\begin{aligned}
\text { work } & =2.3 \mathrm{CR} \text { CT } \mathbf{C} \text { n } C \log \mathbf{C} / \mathbf{C} \\
& =2.3(1.98 \mathrm{cal} / \mathrm{mole} / \mathrm{deg})(310 \mathrm{deg})(\mathrm{sum}) \\
& =1549 \mathrm{cal}
\end{aligned}
$$

Starling Hypothesis

Hydrostatic and osmotic pressures control the flow of solvent across a semi-permeable membrane, and account for fluid exchange across capillaries. The flow depends on the filtration pressure ($\Delta \mathrm{P}-\Delta \pi$), where $\Delta \mathrm{P}=$ difference of hydrostatic pressure and

$$
\Delta \pi=\text { difference of osmotic pressure }
$$

In a capillary the pressures are approximately

Arteriole	$\Delta \mathrm{P}=40 \mathrm{mmHg}$	$\Delta \mathrm{P}=10 \mathrm{mmHg}$	Venule
	$\Delta \pi=25 \mathrm{mmHg}$	$\Delta \pi=25 \mathrm{mmHg}$	
uid out	ú	ü	fluid in
	$\pi=15 \mathrm{mmHg}$	- $\Delta \pi=-15 \mathrm{~mm}$	

Problem: In a capillary, the net hydrostatic pressure is 40 mm Hg and the net osmotic pressure is 15 mmHg . Calculate the filtration pressure (F.P.).

$$
\begin{aligned}
\text { filtration pressure } & =\mathbf{\Delta} \mathbf{P}-\boldsymbol{\Delta} \boldsymbol{\pi} \\
& =40 \mathrm{mmHg}-15 \mathrm{mmHg} \\
& =25 \mathrm{mmHg}
\end{aligned}
$$

What happens to the filtration pressure if 1 mmole of an impermeant neutral polymer is added per liter of plasma?
Calculate the additional osmotic pressure, add it to $\Delta \pi$ and subtract from $\Delta \mathrm{P}$.
pH Equilibria
$\mathrm{HA} \subseteq \mathrm{H}^{+}+\mathrm{A}^{-}$

$$
\begin{aligned}
\mathrm{K} & =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
\log \mathrm{K} & =\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}+\log \mathrm{H}^{+} \\
\mathrm{pH} & =\mathrm{pK}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
\end{aligned}
$$

Problem: A 24 hour sample of urine contains 4.5 g of phosphate $\left(\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-1}+\mathrm{HPO}_{4}{ }^{-2}\right)$ per liter. The pH of the urine is 6.21 , while the body pH is 7.4 . Calculate the amount of cation saved by the kidney through substitution of H^{+}.

Urine
$6.21=7.198+\log \left[\mathrm{HPO}_{4}^{-2}\right]$
$\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-1}\right]$
$\log \left[\mathrm{HPO}_{4}^{-2}\right]=0.988$
$\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-1}\right]$
$\left[\mathrm{HPO}_{4}^{-2}{ }^{-2}=0.102\right.$

Body
$7.4=7.198+\log \left[\mathrm{HPO}_{4}^{-2}\right]$
$\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-1}\right]$
$\log \frac{\left[\mathrm{HPO}_{4}{ }^{-2}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-1}\right]}=.202$
$\left[\mathrm{HPO}_{4}^{-2}\right]=1.592$

$$
\begin{array}{llc}
{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-1}\right]} & & {\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-1}\right]} \\
\text { If }\left[\mathrm{HPO}_{4}^{-2}\right]=\mathrm{x} & {\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-1}\right]=0.102 \mathrm{x}} & \text { If }\left[\mathrm{HPO}_{4}^{-2}\right]=\mathrm{x}
\end{array} \quad\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-1}\right]=1.592 \mathrm{x}
$$

Since the total phosphate $\left(\mathrm{H}_{2} \mathrm{PO}_{4}^{-1}+\mathrm{HPO}_{4}^{-2}\right)$ in both cases is $4.5 \mathrm{~g} / 1$

Urine

$\mathrm{x} \mathrm{C} 96 \mathrm{~g} / \mathrm{mole}+0.102 \mathrm{xC} 97 \mathrm{~g} / \mathrm{mole}=4.5 \mathrm{~g} \quad \mathrm{xC} 96 \mathrm{~g} / \mathrm{mole}+0.102 \mathrm{xC} 97 \mathrm{~g} / \mathrm{mole}=4.5 \mathrm{~g}$ $\mathrm{x}=.0421$ moles $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-1}$

Body
$\mathrm{x}=.018$ moles $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-1}$
.0421 moles $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-1}-.018$ moles $\mathrm{H}_{2} \mathrm{PO}_{4}^{-1}=.0241$ cation replaced by H^{+}

Nernst Equation

Differences in chemical potential are due to differences in concentration. The difference in chemical potential can be measured as an electrical potential when it is expressed across a membrane or an electrode surface. The difference in electrical potential in millivolts at $20^{\circ} \mathrm{C}$

$$
\Delta \mathrm{E}=58 \log _{10} \frac{\mathrm{C}_{1-}}{\mathrm{C}_{2}}
$$

where C_{1} and C_{2} are concentrations in the same units.

Problem: Calculate the electrical potential difference (and give its direction) for the following case:
Solution I contains $100 \mathrm{mMol} / \mathrm{L} \mathrm{KC1}$ and Solution II contains $10 \mathrm{mMol} / \mathrm{L} \mathrm{KC1}$.
The membrane between I and II is permeable to K^{+}only.

$$
\Delta \mathrm{E}=58 \log _{10} \underline{\mathrm{C}}_{1-}=58 \log _{10} \underline{100}=58 \log _{10} 10=58 \mathrm{mV}
$$

The direction of the electrical potential difference is determined by seeing which way the ion flux will charge up the membrane. K ions flow from I to II making side II more positive and impeding the further flow of K ions.

Electron transfer

Because electron transfer is driven by differences in chemical potential, equilibria involving electrons are governed by an equation similar to the Nernst equation. For the reaction

$$
\begin{gathered}
{[\mathrm{red}]-\mathrm{e}^{-} \underline{\mathrm{o}}[\mathrm{ox}]} \\
\mathrm{E}=\mathrm{E}^{0}+2.3 \frac{\mathrm{RT}}{\mathrm{~F}} \log _{10} \frac{\mathrm{Fe}^{+2}-\mathrm{e}^{-} \underline{\mathrm{ox}]} \mathrm{Fe}^{+3}}{[\mathrm{red}]}=\mathrm{E}^{0}+2.3 \frac{\mathrm{RT}}{\mathrm{~F}} \log _{10} \frac{\left[\mathrm{Fe}^{+3}\right]}{\left[\mathrm{Fe}^{+2}\right]}
\end{gathered}
$$

where E^{0} has a different value for each reaction.
Problem: Mix two Fe containing solutions together, and see how they equilibrate.
Mix: $10 \mathrm{ml} 0.1 \mathrm{M} \mathrm{FeCl}_{3} \quad$ (this is in the ferri form) $\quad \mathrm{E}^{0}=.36$ volts
$10 \mathrm{ml} 0.1 \mathrm{M} \mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \quad$ (this is in the ferro form) $\quad \mathrm{E}^{0}=.771$ volts If we assume that x mmols of Fe^{+3} react to become Fe^{+2}, and the ferrocyanide changes to ferricyanide, then the 20 ml mixture will have the following concentrations:

$$
\begin{array}{cccc}
\mathrm{Fe}^{+3} & \mathrm{Fe}^{+2} & \text { ferrocyanide } & \text { ferricyanid } \\
\frac{1 \mathrm{mmol}-\mathrm{x}}{20 \mathrm{ml}} & \frac{\mathrm{x}}{20 \mathrm{ml}} & \frac{1 \mathrm{mmol}-\mathrm{x}}{20 \mathrm{ml}} & \frac{\mathrm{x}}{20 \mathrm{ml}}
\end{array}
$$

At equilibrium, the E's will be equal.

$$
\begin{aligned}
& \mathrm{E}=.771+.059 \log _{10} \frac{1-\mathrm{x}}{\mathrm{x}}=.36+.059 \log _{10} \frac{\mathrm{x}}{1-\mathrm{x}} \\
& .441=.059 \log _{10} \frac{\mathrm{x}}{\text { \%o- } \mathrm{x}}{ }^{2} \\
& \mathrm{x}=0.999671 \mathrm{mmoles} \quad \text { and } \frac{1-\mathrm{x}}{20}=1.645 \mathrm{C10} 0^{-5} \mathrm{M} \\
& \mathrm{E}=.771+.059 \log _{10} \frac{1-\mathrm{x}}{\mathrm{x}}=.771+.059 \log _{10} \frac{1.645 \mathrm{C} 10^{-5}}{5 \mathrm{C} 10^{-2}} \\
& \mathrm{E}=.566 \text { volts }
\end{aligned}
$$

Capacitance, C , relates the charge to the potential $\mathrm{Q}=\mathrm{CCV}$, where $\mathrm{Q}=$ charge and $\mathrm{V}=$ potential

Problem: Calculate the charge at the membrane surface when the membrane potential is 100 mV .

$$
\begin{array}{rlrl}
\mathrm{Q} & =\quad \mathrm{C} \quad \mathrm{C} \text { V } & \\
& =10^{-6} \mathrm{farads} / \mathrm{cm}^{2} & \mathrm{C} 0.1 \text { volt } & \\
& =10^{-7} \mathrm{coul} / \mathrm{cm}^{2} & & (\text { farad }=\mathrm{coul} / \mathrm{volt}) \\
& =10^{-12} \text { equiv } / \mathrm{cm}^{2}=\text { pequiv } / \mathrm{cm}^{2} & & \left(10^{5} \mathrm{coul} / \text { equiv; the prefix } \mathrm{p}=10^{-12}\right) \\
\mathrm{Q} & =6 \mathrm{C} 10^{11} \text { ions } / \mathrm{cm}^{2} & & \left(6 \mathrm{C} 10^{23} \text { ions/equiv }\right)
\end{array}
$$

Keep in mind that the ion fluxes during action potentials are measured in picomoles $/ \mathrm{cm}^{2}$

Ohm's Law

For all conductors, including ionic solutions, I, the current (charges per unit time)

$$
\begin{aligned}
& I=\frac{\Delta E}{R} \quad \Delta E=\text { difference of electrical potential } \\
& R=\text { electrical resistance } \\
& G=1 / R_{e}=\text { electrical conductance }
\end{aligned}
$$

Ions move with different mobilities, given in units of $\mathrm{cm} / \mathrm{sec}$ volt/cm
$\mathrm{H}^{+} \quad 36.2 \times 10^{-4}$

$$
\begin{array}{lc}
\mathrm{Na}^{+} & 5.2 \times 10^{-4} \\
\mathrm{~K}^{+} & 7.6 \times 10^{-4} \\
\mathrm{Cl}^{-} & 7.9 \times 10^{-4}
\end{array}
$$

Chord Conductance Equation

where g is ionic conductance and E is the chemical potential difference in electrical units. Problem: Solve problem 6 page 29 in text by direct substitution in the above equation.

Gibbs-Donnan Equilibrium

is characterized by a semi-permeable membrane and charged osmotically active ion
(1) Initial conditions
(equal concentrations)
(2) Imbalance leads to ion flow
($\mathrm{Na}^{+}, \mathrm{Cl}^{-}$both move $1{ }^{\circ} 2$)
(3) Equilibrium (chemical and electrical potentials balance)
Charging due to ion fluxes creates $\Delta \mathrm{E}$

$\mathrm{Na}^{+} \quad+5$ » Na^{+}
$\mathrm{C1}^{-} \quad{ }^{-} 5_{-}^{\mathrm{Cl}}$ +5 -

Equating chemical and electrical potentials,

For Na^{+}
For Cl^{-}
Adding the equations:

$$
\mu_{\mathrm{C} 1}^{\mathrm{o}}+\mathrm{RT} \ln \left[\mathrm{C1}_{1}\right]=\mu_{\mathrm{C} 1}^{\mathrm{o}}+\mathrm{RT} \ln \left[\mathrm{C1}_{2}\right]+\mathrm{F} \Delta \mathrm{E}_{\mathrm{m}}
$$

$$
\operatorname{RT} 1 \mathrm{n}\left[\mathrm{Na}_{1}\right]\left[\mathrm{Cl}_{1}\right]=\operatorname{RT} \ln \left[\mathrm{Na}_{2}\right]\left[\mathrm{C1}_{2}\right]
$$

Equilibrium condition:

$$
\left[\mathrm{Na}_{1}\right]\left[\mathrm{Cl}_{1}\right]=\left[\mathrm{Na}_{2}\right]\left[\mathrm{C1}_{2}\right]
$$

Donnan Ratio:

$$
\mathrm{r}=\frac{\left[\mathrm{Na}_{1}\right]}{\left[\mathrm{Na}_{2}\right]}=\frac{\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{Cl}_{1}\right]}
$$

Membrane Potential: $\quad \Delta \mathrm{E}=58 \log _{10}\left[\mathrm{Na}_{1}\right]=58 \log _{10}\left[\mathrm{Cl}_{2}\right]$

$$
\left[\mathrm{Na}_{2}\right] \quad\left[\mathrm{Cl}_{1}\right]
$$

Osmotic Pressure: $\quad \pi=\left(\mathrm{C}_{\mathrm{p}}+\mathrm{C}_{\mathrm{e}}\right) \mathrm{RT}$

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{p}}=\text { impermeable ion } \\
& \mathrm{C}_{\mathrm{e}}=\text { excess salt }\left(\mathrm{Na}_{2}+\mathrm{C1}_{2}\right)-\left(\mathrm{Na}_{1}+\mathrm{Cl}_{1}\right)
\end{aligned}
$$

Problem: For a Gibbs-Donnan Equilibrium, the initial concentrations are solution I, $3 \mathrm{mMol} / \mathrm{L}$ NaCl and solution II, $3 \mathrm{mMol} / \mathrm{L} \mathrm{NaP}$. (The membrane is impermeable to P^{-}.) Assume equal volumes, and that the pressure necessary for osmotic equilibrium is applied so there are not water fluxes. Calculate the following:
a) The equilibrium concentrations of the ions
b) The magnitude of the membrane potential and its direction.
c) The hydrostatic pressure that has been applied to maintain osmotic equilibrium. (at $37^{\circ} \mathrm{C}$)

Assume $\mathrm{x}=$ the number of moles that move from I to II
Equilibrium condition:

$$
\begin{aligned}
{\left[\mathrm{Na}_{1}\right] \mathrm{C}\left[\mathrm{C1}_{1}\right] } & =\left[\mathrm{Na}_{2}\right] \mathrm{C}\left[\mathrm{C1}_{2}\right] \\
(3-\mathrm{x}) \quad(3-\mathrm{x}) & =(3+\mathrm{x}) \quad(\mathrm{x}) \\
\mathrm{x} & =1
\end{aligned}
$$

Concentrations are:

$$
\begin{array}{llll}
{\left[\mathrm{Na}_{1}\right] \mathrm{C}\left[\mathrm{C1}_{1}\right]=} & {\left[\mathrm{Na}_{2}\right] \mathrm{C}\left[\mathrm{C1}_{2}\right]} \\
2 \mathrm{M} & 2 \mathrm{M} & 4 \mathrm{M} & 1 \mathrm{M}
\end{array}
$$

Membrane Potential: $\quad \Delta \mathrm{E}=58 \log _{10}\left[\mathrm{Na}_{1}\right]=58 \log _{10}\left[\mathrm{Cl}_{2}\right]$

$$
\Delta \mathrm{E}=58 \log _{10} \frac{\left[\mathrm{Na}_{2}\right]}{\frac{2}{4}}=58 \log _{10} \frac{\left[\mathrm{C1}_{1}\right]}{2}=17.5 \mathrm{mV}
$$

Osmotic Pressure: $\quad \pi=\left\{\left[\mathrm{Na}_{2}\right]+\left[\mathrm{C1}_{2}\right]+[\mathrm{R}]\right\}-\left\{\left[\mathrm{Na}_{1}\right]+\left[\mathrm{C1}_{1}\right]\right\} \quad \mathrm{RCT}$ $=\{4+1+3\}\{2+2\} \mathrm{RCT}$ $=.004 \mathrm{Mol} / 1 \quad \mathrm{RCT}$
$=77.25 \mathrm{mmHg}$

