Equations and Sample Problems

Work

work = force Cdisplacement = f $C\Delta x = P CA C\Delta x = P C\Delta V$ where P = pressure, A = area, V = volume The concept of P ΔV work helps us understand function and energy requirements of lung, heart We can also apply the concept to chemical work of cells and tissues. Chemical work = $\pi \Delta V = \pi \Delta (n/C) = CRT n \Delta C/C = RT n \log_e C/C' = 2.3 RT n \log_{10} C/C'$ where π = osmotic pressure and n = number of moles

Osmotic Pressure

$\pi = C CR CT$

where C is in moles/L

 $R = 62.3 L \text{ (mmHg) moles}^{-1} \text{ deg}^{-1} = \text{molar gas constant}$

 $T = deg (absolute scale) = 273^{\circ} + {^{\circ}C}$

Problem: Calculate π (in mm Hg) at 37°C for a 5% glucose (M.W. 180) solution.

5% glucose (M.W. 180) is 5g/100ml = 50g/l = (50/180) moles/l = 0.28 moles/l.

 $\pi = C CR CT$ = 0.28 moles/l C62.3 L (mmHg) moles⁻¹ deg ⁻¹ C310 deg = 5408 mmHg

Problem: Use the equation $work = 2.3 CR CT C n C \log C/C'$

to calculate the chemical work of parietal secretion for the following example

 $[H^{+}] [Cl^{-}] [K^{+}]$ parietal secretion (C) .159M .166M .0074M blood plasma (C') 4Cl 0^{-8} M .105M .0047M

	С	C'	C/C'	log C/C'	n (moles)	n Clog C/C'
$[\mathrm{H}^{\scriptscriptstyle +}]$.159M	4Cl 0 ⁻⁸ M	3.98Cl 0 ⁶	6.599	.159	1.049
[Cl ⁻]	.166M	.105M	1.581	.199	.166	.033
$[K^+]$.0074M	.0047M	1.574	.197	.0074	.015
					Sum =	1.097 moles

work = $2.3 CR CT C n C \log C/C'$

= 2.3 (1.98 cal/mole/deg) (310 deg) (sum)

= 1549 cal

Starling Hypothesis

Hydrostatic and osmotic pressures control the flow of solvent across a semi-permeable membrane, and account for fluid exchange across capillaries. The flow depends on the filtration pressure ($\Delta P - \Delta \pi$), where $\Delta P =$ difference of hydrostatic pressure and

 $\Delta \pi$ = difference of osmotic pressure

In a capillary the pressures are approximately

 $\begin{array}{ccc} \underline{Arteriole} & \Delta P = 40 \text{ mmHg} & \Delta P = 10 \text{ mmHg} & \underline{Venule} \\ \Delta \pi = 25 \text{ mmHg} & \Delta \pi = 25 \text{ mmHg} \end{array}$ fluid out <u>ú</u> <u>ü</u> fluid in $\Delta P - \Delta \pi = 15 \text{ mmHg} \quad \Delta P - \Delta \pi = -15 \text{ mmHg} \end{array}$

Problem: In a capillary, the net hydrostatic pressure is 40 mm Hg and the net osmotic pressure is 15 mmHg. Calculate the filtration pressure (F.P.).

filtration pressure =
$$\Delta P - \Delta \pi$$

= 40 mmHg - 15 mmHg
= 25 mmHg

What happens to the filtration pressure if l mmole of an impermeant neutral polymer is added per liter of plasma?

Calculate the additional osmotic pressure, add it to $\Delta \pi$ and subtract from ΔP .

pH Equilibria

HA ° H⁺ + A⁻

$$K = [\underline{H^+}][\underline{A^-}]$$
[HA]

$$\log K = \log [\underline{A^-}] + \log H^+$$
[HA]

$$pH = pK + \log [\underline{A^-}]$$
[HA]

Problem: A 24 hour sample of urine contains 4.5g of phosphate $(H_2PO_4^{-1} + HPO_4^{-2})$ per liter. The pH of the urine is 6.21, while the body pH is 7.4. Calculate the amount of cation saved by the kidney through substitution of H⁺.

UrineBody $6.21=7.198 + \log [HPO_4^{-2}]$ $7.4 = 7.198 + \log [HPO_4^{-2}]$ $[H_2PO_4^{-1}]$ $[H_2PO_4^{-1}]$ $\log [HPO_4^{-2}] = 0.988$ $\log [HPO_4^{-2}] = .202$ $[H_2PO_4^{-1}]$ $[H_2PO_4^{-1}]$ $[HPO_4^{-2}] = 0.102$ $[HPO_4^{-2}] = 1.592$

 $[H_2PO_4^{-1}] \qquad [H_2PO_4^{-1}]$ If $[HPO_4^{-2}] = x \qquad [H_2PO_4^{-1}] = 0.102x \qquad If [HPO_4^{-2}] = x \qquad [H_2PO_4^{-1}] = 1.592x$

Since the total phosphate $(H_2PO_4^{-1} + HPO_4^{-2})$ in both cases is 4.5g/l *Urine* x C96 g/mole + 0.102x C97 g/mole = 4.5 g x = .0421 moles H_2PO_4^{-1} *Description Urine Body* x C96 g/mole + 0.102x C97 g/mole = 4.5 g x = .018 moles H_2PO_4^{-1}

.0421 moles $H_2PO_4^{-1}$ - .018 moles $H_2PO_4^{-1}$ = .0241 cation replaced by H^+

Nernst Equation

Differences in chemical potential are due to differences in concentration. The difference in chemical potential can be measured as an electrical potential when it is expressed across a membrane or an electrode surface. The difference in electrical potential in millivolts at 20°C

$$\Delta E = 58 \log_{10} \frac{C_1}{C_2}$$

where C_1 and C_2 are concentrations in the same units.

Problem: Calculate the electrical potential difference (and give its direction) for the following case:

Solution I contains 100 mMol/L KC1 and Solution II contains 10 mMol/L KC1.

The membrane between I and II is permeable to K^+ only.

$$\Delta E = 58 \log_{10} \underline{C_1} = 58 \log_{10} \underline{100} = 58 \log_{10} 10 = 58 \text{ mV}$$

$$\underline{C_2} = 10$$

The direction of the electrical potential difference is determined by seeing which way the ion flux will charge up the membrane. K ions flow from I to II making side II more positive and impeding the further flow of K ions.

Electron transfer

Because electron transfer is driven by differences in chemical potential, equilibria involving electrons are governed by an equation similar to the Nernst equation. For the reaction

$$\begin{bmatrix} \text{red} \end{bmatrix} - e^{-\circ} \quad [\text{ox}] \\ \text{Fe}^{+2} - e^{-\circ} \quad \text{Fe}^{+3} \\ \text{Fe}^{+2} - e^{-\circ} \quad \text{Fe}^{+3} \\ \text{Fe}^{+3} = E^{0} + 2.3 \underbrace{\text{RT}}_{F} \log_{10} \underbrace{[\text{Fe}^{+3}]}_{F} \\ \text{Fe}^{+2} \end{bmatrix}$$

where E^0 has a different value for each reaction.

Problem: Mix two Fe containing solutions together, and see how they equilibrate. Mix: 10ml 0.1M FeCl₃ (this is in the ferri form) $E^0 = .36$ volts 10ml 0.1M K₄[Fe(CN)₆] (this is in the ferro form) $E^0 = .771$ volts If we assume that x mmols of Fe⁺³ react to become Fe⁺², and the ferrocyanide changes to ferricyanide, then the 20ml mixture will have the following concentrations:

Fe ⁺³	Fe ⁺²	ferrocyanide	ferricyanide
<u>1mmol-x</u>	X	<u>1mmol-x</u>	X
20ml	20ml	20ml	20ml

At equilibrium, the E's will be equal.

 $E = .771 + .059 \log_{10} \frac{1 - x}{x} = .36 + .059 \log_{10} \frac{x}{1 - x}$.441 = .059 $\log_{10} \frac{x}{\sqrt{2}}^{2}$ x = 0.999671 mmoles and $\frac{1 - x}{20} = 1.645 \text{ C10}^{-5} \text{ M}$ $E = .771 + .059 \log_{10} \frac{1 - x}{x} = .771 + .059 \log_{10} \frac{1.645 \text{ C10}^{-5}}{5 \text{ C10}^{-2}}$ E = .566 volts

Capacitance, C, relates the charge to the potential Q = C C V, where Q = charge and V = potential

Problem: Calculate the charge at the membrane surface when the membrane potential is 100mV. Q = C C V $= 10^{-6} \text{ farads/cm}^2 C 0.1 \text{ volt}$ $= 10^{-7} \text{ coul/cm}^2 \qquad (\text{farad} = \text{coul/volt})$ $= 10^{-12} \text{ equiv/cm}^2 = \text{pequiv/cm}^2 \qquad (10^5 \text{ coul/equiv; the prefix } p = 10^{-12})$

 $Q = 6 C10^{11} ions/cm^2$ (6 C10²³ ions/equiv)

Keep in mind that the ion fluxes during action potentials are measured in picomoles/cm²

Ohm's Law

For all conductors, including ionic solutions, I, the current (charges per unit time) $I = \underline{\Delta E} \qquad \Delta E = \text{difference of electrical potential}$ $R \qquad R = \text{electrical resistance}$ $G = 1/R_e = \text{electrical conductance}$ Ions move with different mobilities, given in units of $\underline{\text{cm/sec}}$ $W^+ = 36.2 \times 10^{-4}$

Na^+	5.2 x 10 ⁻⁴
\mathbf{K}^+	7.6 x 10 ⁻⁴
Cl-	7.9 x 10 ⁻⁴

Chord Conductance Equation

where g is ionic conductance and E is the chemical potential difference in electrical units. Problem: Solve problem 6 page 29 in text by direct substitution in the above equation.

Gibbs-Donnan Equilibrium

is characterized by a semi-permeable membrane and charged osmotically active ion

 (1) Initial conditions (equal concentrations) (2) Imbalance leads to ion flow (Na⁺, C1⁻ both move 1° 2) 	(1) 5 (2) Na ⁺ C1 ⁻ 5 Na ⁺ R ⁻ 5 fluxes			
(3) Equilibrium (chemical and electrical potentials balance) Charging due to ion fluxes created	$\begin{array}{ccccccccc} Na^+ & +5 & Na^+ \\ C1^- & \circ & 5- & \\ \Delta E & & +5 & - \end{array}$			
Equating chemical and electrical potentials,				
For Na ⁺ μ^{o}_{Na}	+ RT1n[Na ₁] = μ°_{Na} + RT1n[Na ₂] - F Δ E _m			
For C1 ⁻ μ^{o}_{C1}	+ RT1n[C1 ₁] = μ°_{C1} + RT1n[C1 ₂] + F Δ E _m			
Adding the equations: RT	$n[Na_1] [C1_1] = RT1n [Na_2] [C1_2]$			
Equilibrium condition:	$[Na_1] [C1_1] = [Na_2] [C1_2]$			
Donnan Ratio:	$r = [Na_1] = [C1_2]$			
	$[Na_2]$ $[C1_1]$			
Membrane Potential: $\Delta E = 58 \log_{10} [Na_1] = 58 \log_{10} [C1_2]$				
	[Na ₂] [C1 ₁]			
Osmotic Pressure: $\pi = (C_p + C_e) RT$				
$C_p = im$	permeable ion			
$C_e = ex$	cess salt $(Na_2 + C1_2) - (Na_1 + C1_1)$			

Problem: For a Gibbs-Donnan Equilibrium, the initial concentrations are solution I, 3mMol/L NaCl and solution II, 3 mMol/L NaP. (The membrane is impermeable to P⁻.) Assume equal volumes, and that the pressure necessary for osmotic equilibrium is applied so there are not water fluxes. Calculate the following:

a) The equilibrium concentrations of the ions

b) The magnitude of the membrane potential and its direction.

c) The hydrostatic pressure that has been applied to maintain osmotic equilibrium. (at 37°C)

Assume x = the number of moles that move from I to II

Equilibrium condition:	$[Na_1] C [C1_1] = [Na_2] C [C1_2]$			
	(3-x) $(3-x) = (3+x)$ (x)			
	$\mathbf{x} = 1$			
Concentrations are:	$[Na_1] C [C1_1] = [Na_2] C [C1_2]$			
	2M 2M 4M 1M			
Membrane Potential: $\Delta E = 58 \log_{10} [Na_1] = 58 \log_{10} [C1_2]$				
	$[Na_2]$ $[C1_1]$			
	$\Delta E = 58 \log_{10} \underline{2} = 58 \log_{10} \underline{1} = 17.5 \text{ mV}$			
	4 2			
Osmotic Pressure:	$\pi = \{ [Na_2] + [C1_2] + [R] \} - \{ [Na_1] + [C1_1] \} R CT$			
	$= \{ 4 + 1 + 3 \} \{ 2 + 2 \} R CT$			
	= .004Mol/l R CT			
	= 77.25mmHg			