

Minute Ventilation:

$V_{E}=$ breathing frequency (f) x tidal volume $\left(\mathrm{V}_{\mathrm{T}}\right)$ $5 \mathrm{~L} / \mathrm{min}=10 / \mathrm{min} \times 500 \mathrm{ml}$

Correction for $\mathrm{V}_{\mathrm{D} \text { Anat: }}$
$V_{E}=f_{x}\left(V_{T}-V_{D \text { anat }}\right)$
$3.5 \mathrm{~L} / \mathrm{min}=10 / \mathrm{min} \times(500-150) \mathrm{ml}$

Partial pressure of a gas

Dalton's Law: in a mixture of gases, partial pressure ($\mathrm{P}_{\mathrm{gas}}$) of each gas contributes additively to total pressure (P_{B}) in proportion to the gas's fractional volume ($\mathrm{F}_{\mathrm{gas}}$)

$$
P_{g a s}=P B \times \text { Fgas }
$$

Anatomical dead space

$V_{\text {DAnat }}=1 \mathrm{ml} / \mathrm{lb}$ body wt .

No gas exchange (white) in anatomical dead space

Henry's Law: at equilibrium, gas pressure above a liquid equals gas pressure in the liquid
$\mathrm{PO}_{2, \text { gas }}=100 \mathrm{mmHg}$

Blood gas tension determines blood gas content

Concentration of gas dissolved per liter of blood (C) depends on gas solubility (α) and Pgas in blood

$$
\mathrm{CO2}=\alpha \times \mathbf{P O} 2, \text { blood } \quad \begin{aligned}
& \alpha, \text { Solubility coefficient } \\
& (\mathrm{ml} \mathrm{O2/[liter.mmHg]})
\end{aligned}
$$

CO2 $=0.03 \times 100$
$=3 \mathrm{ml}$ O2/liter of blood
Dissolved gas $\longrightarrow=0.3 \mathrm{ml} \mathrm{O} 2 / 100 \mathrm{ml}$ of blood

The $\mathbf{O} 2$ carrying capacity of blood $=\mathrm{Hgb}$-bound $\mathrm{O}_{2}+$ dissolved O_{2}

O2 content in 1 liter of blood at Po2, blood of 100 mmHg
$=(\mathrm{HgbO} 2$ sat $[\%] \times 1.34 \times[\mathrm{Hgb}])+(.03 \times \mathrm{PO} 2$, blood $)$
$=(0.98 \times 1.34 \times 150[\mathrm{~g} / \mathrm{l}])+3$
$=200 \mathrm{ml} \mathrm{O} /$ /liter of blood

Alveolar gas partial pressures determine blood gas tensions

The oxyhemoglobin

 dissociation curve

\square
The lung has low vascular resistance

The oxyhemoglobin dissociation curve

PVR is \lll SVR

The lung has low vascular tone

Systemic capillaries

Lung capillaries

The lung's low vascular resistance is due to

1. Low vascular tone
2. Large capillary compliance

PA enters mid lung height

Gravity determines highest blood flow at lung base

Capillary filtration determines lung water content

Keeping the alveoli "dry": Large capillary pressure drop

Keeping the alveoli "dry": Perivascular cuff formation

Perivascular cuffs in early pulmonary edema

Normal
lung

Early pulmonary edema

The ultimate insult: alveolar flooding

SUMMARY

Features of the pulmonary circulation designed for efficient gas exchange:

1. Accommodate the cardiac output

* low vascular tone
* high capillary compliance

Keeping the alveoli "dry": active transport removes alveolar liquid

SUMMARY

Features of the pulmonary circulation designed for efficient gas exchange:
2. Keep filtration low near alveoli

* low Pc
* vascular interstitial sump

SUMMARY
Features of the pulmonary circulation designed for efficient gas exchange:
3. Keep liquid out of the alveoli

* active transport
* high resistance epithelium

Control of Breathing

Central neurons determine minute ventilation (V_{E}) by regulating tidal volume (V_{T}) and breathing frequency (f).
$V_{E}=V_{T} \mathbf{x} \mathbf{f}$

CO 2 drives ventilation

Hypoxia is a weak ventilatory stimulus

