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Pharmacological Rescue of
Mutant p53 Conformation and

Function
Barbara A. Foster, Heather A. Coffey, Michael J. Morin,

Farzan Rastinejad*

Compounds that stabilize the DNA binding domain of p53 in the active con-
formation were identified. These small synthetic molecules not only promoted
the stability of wild-type p53 but also allowed mutant p53 to maintain an active
conformation. A prototype compound caused the accumulation of conforma-
tionally active p53 in cells with mutant p53, enabling it to activate transcription
and to slow tumor growth in mice. With further work aimed at improving
potency, this class of compounds may be developed into anticancer drugs of
broad utility.

The p53 tumor suppressor gene is mutated
with high frequency in human cancers, and
reintroduction of wild-type p53 can suppress
tumorigenicity (1). The transcription regula-
tory and tumor suppressor activity of p53 is
absolutely dependent on the ability of the
protein to maintain the DNA binding confor-
mation (2). A large number of weakly inter-
acting amino acids in the central DNA bind-
ing domain (DBD) of p53 contribute to the
stability of a structured scaffold that orients
the two loops and the loop-sheet-helix motif
of the DNA binding surface (3). Recent evi-
dence suggests that the most frequently en-
countered mutations in p53 reduce the ther-
modynamic stability of the DBD (4). Desta-
bilization of the active conformation, which
occurs under denaturing conditions or upon
mutation of p53, reduces the binding of p53

to specific peptides, to cellular and viral pro-
teins, and to the monoclonal antibody (mAb)
mAb1620 (5). In contrast, the epitope for
mAb240 is exposed when the active confor-
mation is disrupted (6).

Ablation of a negative regulatory domain
at the p53 COOH-terminus by antibodies and
peptides has been used to promote the activ-
ity of certain mutant p53 forms (7). Here, we
present an alternative approach to promoting
p53 activity by stabilizing the active confor-
mation of the DBD. We observed that puri-
fied wild-type p53 DBD is naturally temper-
ature-sensitive for loss of the active confor-
mation. The epitope for mAb1620 was lost in
a temperature- and time-dependent manner
when the protein was immobilized on micro-
titer plates and heated (Fig. 1A). An eight–
amino acid epitope tag (FLAG) that was
fused to the DBD remained fully stable under
these conditions. Furthermore, loss of the
1620 epitope occurred in concert with the
enhanced appearance of the 240 epitope, con-
firming the transition of the protein into a
nonfunctional conformation. The half-life of
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the 1620 epitope on immobilized wild-type
p53 DBD was ;35 min at 23°C and de-
creased to ,5 min at 45°C (Fig. 1B). In

parallel, the DNA binding capacity of p53
DBD in gel shift assays was reduced upon
heating in solution (8), confirming the asser-

tion that the 1620 epitope provides an accu-
rate measure of the protein’s DNA binding
conformation (2, 5).

Upon screening a library of .100,000
synthetic compounds and testing analogs of
the active compounds, we identified multiple
classes of small molecules (300 to 500 dal-
tons) that promoted the conformational sta-
bility of wild-type p53 DBD as well as that of
full-length p53 (8). Active compounds stabi-
lized the epitope for mAb1620 in a dose-
dependent manner when p53 was heated (Fig.
1C). The dimethyl sulfoxide (DMSO) solvent
and several related analogs of the active com-
pounds failed to stabilize.

We next examined whether the com-
pounds could stabilize the active conforma-
tion of mutant p53. DBDs from several mu-
tant p53 proteins were isolated from bacteria
grown at 17°C where a substantial fraction of
the protein retained the epitope for mAb1620
(4, 9). The mutant DBDs were less stable
than wild-type DBD when heated, but the
stability of the mutants in the presence of
compound equaled or exceeded that of the
wild-type p53 in the absence of compound
(Fig. 1D). These compounds did not rescue
p53 that had already lost the active confor-
mation. Indeed, there was no increase in
mAb1620 reactivity when p53 DBD was
heated before compound addition. Also, the
compounds reduced the rate of epitope loss,
but prolonged heating resulted in loss of the
active conformation. Compound wash-out
before incubation at 37°C did not prevent
epitope loss, suggesting that the effect may
be reversible (8).

All of our active compounds join together
a hydrophobic group (R1, polycyclic) and an
ionizable group (R2, often an amine) by a
linker of a specific length (Fig. 2). Certain
substitutions at R1 and R2 positions main-
tained activity, whereas even subtle changes
in these groups rendered the compounds in-

Fig. 1. Modulation of conformation-dependent epitopes on p53 DBD. (A)
FLAG-tagged p53 DBD (1.25 ng) was immobilized on microtiter wells and
incubated at 45°C, and the epitopes for mAb240 (f), antibody to FLAG (v),
and mAb1620 (Œ) were measured with each of the antibodies (12). Epitope
remaining is shown as percentage of the control protein that was immobi-
lized and maintained on ice. Error bars represent standard deviation. (B)
Wild-type p53 DBD (0.5 ng) was immobilized and incubated at 23°C (f),
32°C (v), or 45°C (Œ), and the epitope for mAb1620 was measured.
Standard deviations were ,10%. (C) Wild-type p53 DBD (1 ng) was

immobilized and heated at 45°C for 30 min in the presence of CP-31398 (f),
CP-257042 (v), or the equivalent concentration of the DMSO vehicle (Œ).
The remaining epitope for mAb1620 is shown as percentage of unheated
control. (D) Wild-type (WT) and mutant p53 DBD preparations, with nearly
equal amounts of epitope for mAb1620 (within 10%), were immobilized and
heated at 37°C for 30 min in the presence of vehicle (solid bars) or
compound (hatched bars). The remaining epitope for mAb1620 is shown as
percentage of unheated controls. Error bars are the standard deviation for
four replicates.

Fig. 2. Structural features of the active compounds. The relative activity of ;300 related
compound analogs was assessed on the basis of the concentration of compound required to
stabilize 50% of the mAb1620 epitope on wild-type p53 DBD. Active and inactive compounds
denote .10-fold differences in potency of matched compound pairs.
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active. Negatively charged or uncharged
groups at R2 were always inactive. The
spacing between R1 and R2 was also crit-
ical because a propyl length linker was
optimal for activity. Branched linkers often
improved activity. Although the exact na-
ture of the molecular interaction remains to
be elucidated, these observations suggest a
bivalent contact between p53 and the com-
pounds through the R1 and the R2 groups.
The optimal length of the linker may reflect
the necessity of precisely distancing or ori-
enting these two sites on the protein while
providing a tether that enhances the stabil-
ity of the active conformation.

To examine the effect of compounds on
the conformational stability of p53 in living
cells, we used the p53-null H1299 lung car-
cinoma cells that were transfected with mu-
tant p53. The mAbDO-1, which does not
discriminate between the active and the inac-
tive conformations of p53, was used in pro-
tein immunoblots to select clones expressing
mutant p53. Immunoprecipitation of the
transfected cell extracts with mAb1620 con-
firmed that only a small fraction of mutant
p53 in cells retains the active conformation
(10). Low micromolar concentrations of a
prototype compound, CP-31398, increased
the steady-state fraction of 1620-positive p53

in cells by fivefold at 4 to 6 hours after
treatment (Fig. 3A). CP-31398 did not alter
the total amount of p53 as measured with
mAbDO-1. Despite the large pool of inactive
p53 in these cells, the compounds are likely
to stabilize only the newly synthesized p53
that is in the active conformation and thus
allow for time-dependent accumulation of
this fraction.

CP-31398 also enhanced the steady-state
levels of the p53 fraction that displays the
epitope for mAb1620 in tumors derived from
transfected H1299 cells. Tumor-bearing mice
were killed after a single dose of 100 mg
kg21, and the conformational status of p53
was quantified in the tumor lysates. Total p53
levels were unchanged as measured on pro-
tein immunoblots with mAbDO-1. The rela-
tive amount of the mAb1620 epitope was
increased by ;fivefold at 3 hours after treat-
ment (Fig. 3B).

We next examined the effect of the com-
pound on the sequence-specific transcription
activity of p53. H1299 cells were transfected
with a p53-inducible luciferase reporter gene,
and a stable clone (H1299/Reporter) was re-
transfected to express mutant p53. In the
presence of mutant p53, CP-31398 increased
reporter gene expression by ;10-fold (Fig.
3C). This induction of the reporter gene was

dependent on the presence of mutant p53
because H1299/Reporter cells did not acti-
vate the reporter gene.

To determine if mutant p53 could be func-
tionally restored in vivo, we measured the
reporter gene in tumors. A maximum 4.5-fold
induction was observed at 8 hours after a
single intraperitoneal dose of CP-31398 (Fig.
3D). No induction was observed in mice
treated with the vehicle. The peak plasma
concentration of compound in mice was ;10
mg ml21 (8). This may account for the lower
levels of reporter gene induction in tumors as
compared with cultured cells, where a 10-
fold induction was observed at 18 mg ml21

(Fig. 3C).
We also examined the ability of CP-31398

to induce the cellular p21 gene in the absence
of wild-type p53. As compared with vehicle
treatment, CP-31398 elevated p21 expression
by ;threefold in Saos-2 osteosarcoma cells
that express either position 173 or position
249 mutant p53 (Fig. 4). The total amount of
mutant p53 protein in these cells was un-
changed, suggesting that conformationally
stabilized p53 can activate a relevant down-
stream gene.

We next examined whether CP-31398
could inhibit the growth of small human tu-
mor xenografts with naturally mutated p53.
The compound appeared safe, and no mortal-
ity was observed when mice were dosed at
200 mg kg day21 (100 mg kg21, every 12
hours) for 14 consecutive days (8). Doses
above 100 mg kg21 did not appreciably in-
crease plasma concentrations, suggesting that
absorption may be limited. The A375.S2 mel-
anoma cell line (mutated at p53 position 249)
and the DLD-1 colon carcinoma cell line
(mutated at p53 position 241) rapidly formed
tumors in nude mice (Fig. 5). Seven daily
injections of CP-31398 (l00 mg kg21) sup-
pressed A375.S2 tumor growth by ;50%,
and twice daily administrations inhibited tu-
mor growth by 75% (Fig. 5). Twice daily
treatments completely inhibited DLD-1 tu-
mor growth. The growth of both tumor types
resumed upon cessation of treatment, con-
firming the inhibitory activity of the com-

Fig. 3. Modulation of p53 con-
formation and transcription ac-
tivity in cultured cells (A and C)
and in tumors (B and D). (A)
Cultured H1299 cells transfected
with 173A mutant p53 were
treated with CP-31398 (15 mg
ml21) (13). Total levels of p53
were unchanged as assessed
with mAbDO-1. Cell lysates rep-
resenting equal amounts of p53
were added to microtiter plates
coated with mAb1620, and the
amount of p53 that displayed
the epitope for mAb1620 was
measured (14). Values represent
the average of three replicates.
Reactivity with mAb1620 did
not change in vehicle-treated
cells. (B) Mice with subcutaneous
tumors derived from H1299
transfectants were given a single
intraperitoneal injection of CP-
31398 (100 mg kg21), and tu-
mor lysates from two mice at
each time point were prepared.
Lysates representing equal
amounts of total p53 were as-
sayed as above to determine the
relative fraction of p53 that dis-
played the epitope for mAb1620. Each sample deviated by ,15% from the average (shown), and
similar results were obtained when the experiment was repeated. (C) Matched H1299 transfectants
with a luciferase reporter gene (v) or with the reporter gene and the 173A mutant p53 (f) were
treated in microtiter wells for 16 hours (15). As a measure of p53 transcription activation function,
the expression of luciferase reporter gene was corrected for the basal level of expression in the
absence of compound. Shown are results of a representative experiment with standard deviation
for four replicate wells. (D) Tumor lysates from animals treated as in (B) were normalized for
protein content and analyzed for luciferase expression. Luciferase expression was unchanged in
lysates from vehicle-treated tumors.

Fig. 4. Induction of p21 in cells expressing only
mutant p53. Saos-2 cells expressing transfected
mutant p53 were treated with CP-31398 (16
mg ml21) for 16 hours. Cell lysates were nor-
malized for total protein and analyzed on pro-
tein immunoblots for the expression of p21 and
total p53 (16).
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pound. Pharmacokinetic data indicated that
even twice daily dosing of CP-31398 did not
maintain concentrations of the compound that
were sufficient to continuously sustain p53
activity in tumors of treated animals. This
suggests that intermittent threshold levels of
p53 activity may be sufficient to suppress
tumor growth.

Pharmacological agents that specifically
reduce the free energy of a protein’s active
conformation may have utility in cancer,
cystic fibrosis, and prion-mediated neuro-
degeneration, where protein conformation,
folding, and aggregation contribute to the
disease (11). Other benefits of specific con-
formation stabilizing agents may be envi-
sioned whereby naturally unstable proteins
are maintained in their active conformation,
enabling them to compensate for disease-
related deficiencies. Our findings support
the notion that broadly effective anticancer
therapies may one day be developed from
compounds that conformationally stabilize
p53. We have shown here that prototype
compounds can conformationally modulate
all of the four randomly chosen p53 mu-
tants in vitro and functionally activate three
mutants in vivo. Evaluating the full poten-
tial of these compounds will ultimately re-
quire improvements in their potency.
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Fig. 5. Growth inhibition of tu-
mors with naturally mutated
p53. Mice were inoculated with
human tumor cells in Matrigel, a
gel matrix with growth factors,
and treated by intraperitoneal
injections of CP-31398 or vehicle
(17). Groups of mice were ran-
domized for equal inoculum size
on the basis of measurement of
the Matrigel plug and treated for
7 days at 24-hour (Œ) or 12-hour
(v) intervals. Vehicle-treated
mice received injections at 12-
hour intervals (f). Dotted lines
represent initial volume, which
includes Matrigel. Tumor volume
was determined by standard methods (18). Error bars represent standard error for 5 to 10 mice in
each group. Results were reproducible in repeated experiments.
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