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Angiogenesis denotes the formation of new blood
vessels from pre-existing vessels. Physiological
angiogenesis, which is required for embryonic
development, wound healing and the menstrual cycle,

is characterized by tight regulation both spatially and
temporally. Angiogenic factors, such as fibroblast
growth factors (FGFs) and vascular endothelial growth
factors (VEGFs), stimulate endothelial cells to secrete
several proteases and plasminogen activators,
resulting in the degradation of the vessel basement
membrane, which in turn allows cells to invade the
surrounding matrix. The cells migrate, proliferate and
eventually differentiate to form a new, lumen-
containing vessel. Finally, the endothelial cells deposit
a new basement membrane and secrete growth factors,
such as platelet-derived growth factor (PDGF), which
attract supporting cells such as pericytes, ensuring the
stability of the new vessel1. This is a complex process
that involves the concerted action of several other
factors, such as the angiopoietins and ephrins, that act
on specific receptors to regulate vessel stability2.

Angiogenic growth factors such as fibroblast growth factors (FGFs) and

vascular endothelial growth factors (VEGFs) are currently targets of intense

efforts to inhibit deregulated blood vessel formation in diseases such as cancer.

FGFs and VEGFs exert their effects via specific binding to cell surface-

expressed receptors equipped with tyrosine kinase activity. Activation of the

receptor kinase activity allows coupling to downstream signal transduction

pathways that regulate proliferation, migration and differentiation of

endothelial cells. Inhibitors of FGF and VEGF signalling are currently in clinical

trials. In this article, the current knowledge of FGF- and VEGF-induced signal

transduction that leads to specific biological responses will be summarized.

Furthermore, the manner in which this knowledge is being exploited to

regulate angiogenesis will be discussed.

FGF and VEGF function in angiogenesis:

signalling pathways,biological

responses and therapeutic inhibition

Michael J. Cross and Lena Claesson-Welsh

pre-eclampsia/eclampsia in Australian women.
Gynecol. Obstet. Invest. 50, 100–102

37 Laivuori, H. et al. (2000) 677 C→T polymorphism of
the methylenetetrahydrofolate reductase gene and
preeclampsia. Obstet. Gynecol. 96, 277–280

38 Chen, J. et al. (1999) MTHFR polymorphism,
methyl-replete diets and the risk of colorectal
carcinoma and adenoma among U.S. men and
women: an example of gene–environment
interactions in colorectal tumorigenesis. 
J. Nutr.129, 560S–564S

39 Levine, A.J. et al. (2000) The methylene-
tetrahydrofolate reductase 677C→T polymorphism
and distal colorectal adenoma risk. Cancer
Epidemiol. Biomarkers Prev.9, 657–663

40 Slattery, M.L. et al. (1999) Methylene-
tetrahydrofolate reductase, diet, and risk of colon
cancer. Cancer Epidemiol. Biomarkers Prev.8,
513–518

41 Ulrich, C.M. et al. (1999) Colorectal adenomas and
the C677T MTHFR polymorphism: evidence for
gene–environment interaction? Cancer Epidemiol.
Biomarkers Prev.8, 659–668

42 Ulvik, A. et al. Smoking, folate and
methylenetetrahydrofolate reductase status as
interactive determinants of adenomatous and
hyperplastic polyps of colorectum. Am. J. Med.
Genet. (in press) 

43 Kim, Y.I. (2000) Methylenetetrahydrofolate
reductase polymorphisms, folate, and cancer risk: a
paradigm of gene–nutrient interactions in
carcinogenesis. Nutr. Rev.58, 205–209

44 Mahmud, N. et al. (1999) Increased prevalence of
methylenetetrahydrofolate reductase C677T
variant in patients with inflammatory bowel
disease, and its clinical implications. Gut45,
389–394

45 Nielsen, J.N. et al. (2000) Increased prevalence of
methylenetetrahydrofolate reductase C677T
variant in patients with IBD. Gut47, 456–457

46 Vecchi, M. et al. (2000) Inflammatory bowel diseases
are not associated with major hereditary conditions
predisposing to thrombosis. Dig. Dis. Sci. 45,
1465–1469

47 Yoo, J.H. et al. (2000) Pathogenicity of thermolabile
methylenetetrahydrofolate reductase for vascular
dementia. Arterioscler. Thromb. Vasc. Biol.20,
1921–1925

48 Wei, J. and Hemmings, G.P. (1999) Allelic
association of the MTHFR gene with schizophrenia.
Mol. Psychiatry4, 115–116

49 Joober, R. et al. (2000) Association between the
methylenetetrahydrofolate reductase 677C→T
missense mutation and schizophrenia. Mol.
Psychiatry5, 323–326

50 Pollak, R.D. et al. (2000) The C677T mutation in the
methylenetetrahydrofolate reductase (MTHFR)
gene and vascular dementia. J. Am. Geriatr. Soc.48,
664–668

51 Tysoe, C. et al. (1997) Analysis of α-1
antichymotrypsin, presenilin-1, angiotensin-
converting enzyme, and methylenetetrahydrofolate
reductase loci as candidates for dementia. Am. J.
Med. Genet.74, 207–212

52 Smulders, Y.M. et al. (1998) Trimethoprim and
fasting plasma homocysteine. Lancet352,
1827–1828 [Erratum: Lancet (1999) 353, 758]

53 Haagsma, C.J. et al. (1999) Influence of
sulphasalazine, methotrexate, and the combination
of both on plasma homocysteine concentrations in
patients with rheumatoid arthritis. Ann. Rheum.
Dis.58, 79–84

54 Yoo, J.H. and Hong, S.B. (1999) A common mutation
in the methylenetetrahydrofolate reductase gene is
a determinant of hyperhomocysteinemia in epileptic
patients receiving anticonvulsants. Metabolism48,
1047–1051

55 Tonstad, S. et al. (1998) The C677T mutation in the
methylenetetrahydrofolate reductase gene
predisposes to hyperhomocysteinemia in children
with familial hypercholesterolemia treated with
cholestyramine. J. Pediatr.132, 365–368

56 Daly, D. et al. (1997) The effect of L-dopa
administration and folate deficiency on plasma
homocysteine concentrations in rats. J. Nutr.
Biochem.8, 634–640

57 Yasui, K. et al. (2000) Plasma homocysteine and
MTHFR C677T genotype in levodopa-treated
patients with PD. Neurology55, 437–440

58 Toffoli, G. et al. (2000) MTHFRgene polymorphism
and severe toxicity during adjuvant treatment of early
breast cancer with cyclophosphamide, methotrexate,
and fluorouracil (CMF). Ann. Oncol.11, 373–374

59 Brattstrom, L. et al. (1998) Acommon
methylenetetrahydrofolate reductase gene mutation
and longevity. Atherosclerosis141, 315–319

http://tips.trends.com 0165-6147/01/$ – see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: S0165-6147(00)01676-X

Review



TRENDS in Pharmacological Sciences Vol.22 No.4  April 2001

http://tips.trends.com

202 Review

Several pathological conditions, such as tumour
progression, rheumatoid arthritis and diabetes, are
characterized by excessive angiogenesis where
vessels develop in an uncontrolled or disorganized
manner. The now generally accepted concept that
growth of most types of tumours requires
angiogenesis was put forward by Judah Folkman in
the early 1970s. Thus, the dormant cancer in situ can
expand once it has acquired the ability to disturb the
balance between the production of stimulatory factors
and the production of inhibitory factors, thereby
promoting the angiogenic switch3. Many different
tumour cells secrete VEGF, the expression of which is
regulated by hypoxia. However, in general, tumours
appear to produce more than one type of endothelial

growth stimulus (e.g. FGF and VEGF) or might, by
genetic drifting, produce different stimulators over
time4. Recently, novel anti-angiogenic agents have
been developed that inhibit the action of FGF and
VEGF. Several of these compounds are now in clinical
trials and might offer hope in the treatment and
management of several diseases.

FGF and VEGF: the angiogenic factors

FGF ligands and receptors
Basic fibroblast growth factor [bFGF (also known as
FGF-2)] was the first pro-angiogenic molecule to be
identified5. At present, the FGF family is known to
contain at least 20 factors, which are ~30–70%
identical in their primary amino acid sequences. The
classical FGFs, FGF-1 and FGF-2, lack cytoplasmic
sequences for extracellular export, in contrast to most
growth factors that are secreted from their producer
cells. The apparent lack of regulated FGF export has
been an obstacle in the wide acceptance of a crucial
role for FGF in angiogenesis; however, there are
several working models for alternative modes of
transport out of the cell rather than via the classical
secretory apparatus6. FGFs bind with high affinity to
heparan sulfate proteoglycans (HSPGs), which are
located on the surface of most cells and within the
extracellular matrix7. This pool of FGFs constitutes a
reservoir of the growth factor that can be released in a
regulated manner (e.g. by the action of heparanases).
HSPGs also serve as co-receptors for FGF and
modulate the effects of FGF both in vitro and in vivo8.

The biological effects of FGFs are mediated by
four structurally related receptor tyrosine kinases,
denoted FGFR-1, -2, -3 and -4, which display broad
expression patterns. Alternative splicing of the
FGFR mRNA generates receptor variants9,10, which
display a range of receptor–ligand interactions11.
Disruption of the genes encoding FGFR-1 or FGFR-2
leads to embryonal death before gastrulation12,13.
This early lethality has made it impossible to define
specifically the role of these FGF receptors in the
later stages of development and in angiogenesis.
However, recent work using adenovirus-mediated
expression of dominant-negative FGFR-1 in mouse
embryos has shown that FGFR-1 is required for the
development and maintenance of the vasculature in
the embryo14. By contrast, inactivation of the gene
encoding FGF-2 results in mice that are
morphologically normal but display decreased
vascular tone and low blood pressure15. When
reconciled with the receptor knockout data, this
suggests redundancy in the FGF family. Disruption
of the gene encoding FGFR-3 results in mice with
skeletal abnormalities16, whereas the result of
inactivation of the gene encoding FGFR-4 has not
been reported. Recent crystallography studies have
revealed that although monomeric FGF-2 binds with
low affinity to the FGFR-1 in the absence of heparin,
the binding is stabilized by the presence of heparin or
heparan sulfates, resulting in the formation of a
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Fig. 1. Overview of FGFR-1 signalling. Binding of FGF results in receptor dimerization and the
phosphorylation of specific tyrosine residues within the intracellular domain of the receptor (the
positions of phosphotyrosine residues in the receptor amino acid sequence are shown). Several
intracellular signalling proteins are activated either directly via receptor binding, such as Crk and PLC-γ, or
via indirect mechanisms, such as Shc and FRS-2. Several other proteins, such as Src, Shb, p38 MAPK,
PI3K, p70 S6K and Grb14 are also activated via FGFR-1, although their exact mechanism of activation has
not been determined (indicated by ?). Abbreviations: FGF, fibroblast growth factor; FGFR-1, fibroblast
growth factor receptor 1; FRS-2, fibroblast growth factor receptor substrate 2; Grb2, growth factor
receptor-bound 2; Grb14, growth factor receptor-bound 14; HSPG, heparan sulfate proteoglycan; 
MAPK, mitogen-activated protein kinase; MEK, MAPK kinase; p70 S6K, p70 ribosomal S6 kinase; PI3K,
phosphoinositide 3-kinase; PKC, protein kinase C; PLA2, phospholipase A2; PLC-γ, phospholipase C-γ;
PLD, phospholipase D; Shc, Src homology and collagen; SHP-2, SH2 phosphatase 2.
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complex of two FGF molecules and two FGFRs
(Ref. 17). Receptor dimerization results in the
intermolecular autophosphorylation of specific
tyrosine residues within the dimeric complex.
Several autophosphorylation sites have been
identified in FGFR-1 (Ref. 18) (Fig. 1). Some of these
sites have been assigned a particular function in
FGFR-1 signal transduction: Y463 in the
juxtamembrane region is responsible for binding the
small adaptor molecule Crk (Ref. 19); Y653 and Y654
in the second kinase domain are crucial for kinase
activity; and Y766 is the binding site for
phospholipase C-γ (PLC-γ)20. Several intracellular
signalling cascades are known to be activated by
FGFR-1-mediated signalling, including the Ras
pathway, Src family tyrosine kinases,
phosphoinositide 3-kinase (PI3K) and the PLC
pathway (Table 1).

VEGF ligands and receptors
VEGF was initially termed vascular permeability
factor (VPF) because of its ability to induce vascular
leakage21. The VEGF family currently comprises six
members: VEGF-A (which denotes the originally
identified VEGF), placenta growth factor (PlGF),
VEGF-B, VEGF-C, VEGF-D and the orf parapox
virus VEGF, referred to as VEGF-E. Alternative exon
splicing of the gene encoding VEGF-A results in the
generation of at least five molecular variants that
differ in total amino acid number. In humans, these
correspond to VEGF-A121, VEGF-A145, VEGF-A165,
VEGF-A189 and VEGF-A206, of which VEGF-A165 is
the predominant form. This variant is secreted by a
broad variety of cells and is a heparin-binding
disulfide-linked homodimeric molecule, although
heterodimers of VEGF-A165 and PlGF have also been

identified22. VEGF expression is transcriptionally
regulated by hypoxia23,24, which occurs during
tumour expansion and ischaemia. The importance of
VEGF in vascular development is highlighted by the
fact that loss of a single VEGF-A allele results in
abnormal blood vessel development and embryonal
death25,26.

The biological effects of VEGFs are mediated via
three specific cell surface-expressed receptors,
VEGFR-1 (Flt-1), VEGFR-2 (KDR or Flk-1) and
VEGFR-3 (Flt-4). All three consist of an extracellular
domain comprising seven Ig-like domains, a
transmembrane domain, followed by a kinase domain
that is divided in two parts by the insertion of a 
non-catalytic 100-amino-acid residue sequence, and 
a C-terminal tail (Fig. 2). VEGFR-1 and VEGFR-2 
are mainly expressed on endothelial cells, although
other cell types of haemopoietic or other origins can
also express these receptors27. VEGFR-3 is found
mainly in the lymphatic endothelium; moreover, this
is not a receptor for VEGF-A (Ref. 28). Gene knockout
studies have revealed that both VEGFR-1 and
VEGFR-2 are essential for the development of the
vasculature in mouse embryos29,30. In the absence of
VEGFR-2, haemangioblasts fail to differentiate into
endothelial cells. However, in the absence of VEGFR-1,
the vascular defect is in fact due to an increase in the
number of haemangioblasts, the endothelial cell
progenitors31. This suggests that in the embryo,
VEGFR-1 is required to suppress excessive
haemangioblast development, possibly by
sequestering VEGF. This is also supported by the
finding that the cytoplasmic domain of the VEGFR-1
is not required for vascular development32. As for
VEGF, hypoxia has been shown to regulate both
VEGFR-1 and VEGFR-2 expression33,34, although
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Table 1. FGFR-1 signalling mechanismsa

Signalling Receptor Activated via Signalling cascade Physiological role Refs

molecule binding site regulated

Crk Y463 FGFR-1 binding Activation of MAPK, Jun kinase Proliferation 19

PLC-γ Y766 FGFR-1 binding Ins(1,4,5)P3-mediated Ca2+ release Cytoskeletal reorganization,  20,52,53
and DAG generation receptor endocytosis

Unknown 759–774 Unknown mechanism Unknown Migration 54

PKC − PLC-γ -mediated DAG Protein phosphorylation, Unknown 53
regulation of PLA2, PLD

FRS-2 − Crk /JM region of FGFR-1 Activation of p42/44  MAPK cascade Proliferation 19,55,56

SHP-2 − Binding to FRS-2 Sustained p42/44 MAPK activation Differentiation 57

Src − FGFR-1 activation Unknown Differentiation 58

Shc − FGFR-1 activation p42/44 MAPK Proliferation, differentiation 58

Grb14 − FGFR-1 binding p42/44 MAPK? Proliferation? 59

PI3K − Y766F, downstream of PLC-γ? Rac, Akt activation? Migration, survival? 53

p70 S6K − Unknown mechanism Unknown Proliferation 60

p38 MAPK − Unknown mechanism Unknown Proliferation, survival 61

Shb − FGFR-1 activation Unknown Differentiation, apoptosis 62
aAbbreviations:  DAG, sn-1,2-diacylglycerol; FGFR-1, fibroblast growth factor receptor 1; FRS-2, FGF receptor substrate 2; Grb14, growth factor receptor-bound 14; Ins(1,4,5)P3,
inositol (1,4,5)-trisphosphate; JM, juxtamembrane; MAPK, mitogen-activated protein kinase; p70 S6K, p70 ribosomal S6 kinase; PI3K, phosphoinositide 3-kinase; PKC, protein
kinase C; PLA2, phospholipase A2; PLC-γ, phospholipase C-γ; PLD, phospholipase D; Shc, Src homology and collagen; SHP-2, SH2 phosphatase 2.
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there are hypoxia-responsive elements in only the
VEGFR-1 promoter35. Recently, neuropilin-1 (NP-1),
a receptor for the collapsin–semaphorin family, was
found to bind VEGF-A165 (Ref. 36). NP-1 efficiently
potentiates VEGF-induced endothelial cell migration,
through an as yet unidentified mechanism.

VEGF receptor signal transduction remains poorly
understood. VEGFR-1 is a weak kinase, at least in
tissue culture cell lines. Several phosphorylation sites
and potential binding molecules have been
identified27 (Fig. 2), although their roles in VEGF-
stimulated cellular responses remain to be

determined. VEGFR-2 exhibits a strong induction in
kinase activity in response to VEGF-A; however, the
position of all the autophosphorylated tyrosine
residues have not been fully identified37. VEGFR-2
has been found in complex with the integrin αvβ3,
which is specifically expressed on angiogenic
endothelium. Activation of αvβ3 by plating cells on
vitronectin resulted in increased VEGFR-2 kinase
activity and augmented VEGF-mediated
mitogenicity38. This interaction might allow direct
transduction of VEGF effects on cell-matrix
interaction.

Specific activation of VEGFR-1 with the ligand
PlGF and VEGFR-2 with the ligand VEGF-E, and the
use of cells transfected with each receptor has
identified several signalling molecules downstream of
each receptor (Fig. 2).

Signal transduction induced by FGF and VEGF in

different model assays

FGF, as well as VEGF, stimulate survival,
proliferation, migration and differentiation of
primary and stable endothelial cells, although 
the efficiencies of transduction of these responses 
are dependent on the type of endothelial cell line. 
The signalling pathways activated by FGFR-1 
have been the most extensively studied and are
summarized in Table 1. Analysis of VEGFR 
signalling has led to the conclusion that, although 
the affinity for VEGF binding is approximately
tenfold higher for VEGFR-1 than for VEGFR-2, it is
the activation of the latter that is responsible for
conveying the VEGF-mediated effects in endothelial
cells. Thus, although VEGFR-1 has been shown to
mediate chemotaxis in monocytes39, in endothelial
cells it is thought to sequester VEGF, thus regulating
VEGFR-2 activation; such a mechanism is supported
by the VEGFR-1 knockout phenotype discussed
previously. The signalling molecules activated by
VEGFR-2 and their physiological role are
summarized in Table 2.

FGF and VEGF induce angiogenesis in the
chicken chorioallantoic membrane (CAM). Recently,
Eliceiri and co-workers reported that in the CAM,
FGF-mediated angiogenesis was blocked following
treatment with the specific mitogen-activated
protein kinase kinase (MEK) inhibitor PD98059,
indicating the importance of the Ras–MEK–MAPK
(mitogen-activated protein kinase) pathway for FGF-
stimulated angiogenesis40. Furthermore, in a report
from the same group, introduction of dominant-
negative Src cytoplasmic tyrosine kinase was shown
to inhibit VEGF, but not FGF-induced angiogenesis
in the CAM (Ref. 41). Recently, the effect of PI3K on
CAM angiogenesis was tested by avian retroviral-
mediated gene transfer of dominant-negative and
constitutively active PI3K, the activity of which was
found to be required for CAM angiogenesis42.

In recent years, rapid progress has been made in
our understanding of the developmental regulation of
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Fig. 2. Overview of VEGFR-1 and VEGFR-2 signalling. Ligand binding results in receptor dimerization
and the phosphorylation of specific tyrosine residues within the intracellular domain of each receptor
(the positions of phosphotyrosine residues in the receptor amino acid sequence are shown). In
VEGFR-1, several signalling molecules can interact with Y1213 and Y1333 based on their SH2-
domain-binding specificity. In VEGFR-2, several intracellular signalling proteins are activated directly
via receptor binding, such as Sck, PLC-γand VRAP. Several other proteins, such as Akt (protein kinase B),
FAK, p38 MAPK, eNOS, Src and PI3K are also activated via VEGFR-2, although their exact mechanism
of activation has not been determined (indicated by ?). Although Y1175 has not yet been identified as
an autophosphorylation site, it has been shown to bind PLC-γand Sck. Abbreviations: eNOS,
endothelial nitric oxide synthase; FAK, focal adhesion kinase; MAPK, mitogen-activated protein
kinase; MEK, MAPK kinase; PI3K, phosphoinositide 3-kinase; PLA2, phospholipase A2; PLC-γ,
phospholipase C-γ; PKC, protein kinase C; Sck, Shc-like protein; SHP-2, SH2 phosphatase 2; VEGFR-1,
vascular endothelial growth factor receptor 1; VEGFR-2, vascular endothelial growth factor receptor 2;
VRAP, VEGF receptor-associated protein.
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the vasculature, through gene inactivation in mice.
Targeted gene inactivation of several signal
transduction molecules results in defective vascular
development, which possibly implies that these
molecules are downstream in vivo effectors of either
FGFR or VEGFR activation. Notably, several of these
molecules are components of the Ras–MAPK pathway.
These include ShcA (Ref. 43), Ras-GAP (GTPase-
activating protein)44, B-Raf (Ref. 45) and MEK kinase 3
(MEKK3)46. Furthermore, although Src−/− mice show
normal angiogenesis, VEGF-induced vascular
permeability is impaired in both Src−/− or Yes−/− mice,
but not in Fyn−/− mice41 (Yes and Fyn are Src-family
kinases).

Therapeutic modulation of angiogenesis

It is now well established that tumour progression 
is angiogenesis dependent. Many tumour cell
lines secrete VEGF in vitro and VEGF mRNA
levels are increased in most human tumours.
Furthermore, both FGF-2 and VEGF are elevated in
the serum of individuals with a variety of tumours47.
Other diseases characterized by excessive
angiogenesis include diabetic retinopathy and
rheumatoid arthritis. Intense research in the past few
years has been focused on developing inhibitors of
FGF and VEGF action47,48. These angiogenesis
inhibitors are directed towards a particular growth
factor, growth factor receptor or an intracellular
substrate for the receptor. Furthermore, endogenous
angiogenesis inhibitors, which can act by preventing
growth factor function, have also been described.
Table 3 summarizes current efforts to develop drugs
that specifically inhibit angiogenesis by targeting
growth factor function. It is noteworthy that other
inhibitors of endothelial cells are being developed, 

but are not listed because their mode of action 
is not directed against FGF or VEGF function, or
their mode of action is unknown. (For a complete 
list of angiogenesis inhibitors in clinical trials, 
see http://cancertrials.nci.nih.gov/news/angio/)

Interest has also been focused on the potential
administration of FGF-2 and VEGF to alleviate
conditions characterized by insufficient blood supply,
such as limb and myocardial ischaemia49. A recent
study by Isner and colleagues has shown that
intramyocardial administration of a plasmid
encoding VEGF165 improved myocardial infusion in a
group of individuals with myocardial ischaemia50.
Although such gene therapy approaches are still
progressing, it is now clear that a localized increase
in angiogenesis is of clinical benefit in some
conditions.

Conclusion and perspectives

One of the major challenges to researchers in the
angiogenesis field has been to identify the crucial
signal transduction pathway by which FGF and
VEGF modulate angiogenesis. Cell culture models
have provided a plethora of data regarding FGF and
VEGF signal transduction pathways and their
physiological role; however, it is also apparent that
most of these pathways are also used by growth
factors that are not angiogenic. The future lies in
identifying the crucial genes activated by the FGF
and VEGF signalling pathways that are responsible
for angiogenesis. Recently, St Croix and colleagues
compared the pattern of gene expression in
endothelial cells derived from the blood vessels of
normal and malignant colorectal tissue51. Overall
gene expression was similar between normal
endothelial cells and tumour vasculature, indicating
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Table 2. VEGFR-2 signalling mechanismsa

Signalling Receptor Activated via Signalling cascade regulated Physiological role Refs

molecule binding site

PLC-γ Y801? Y1175? VEGFR-2 binding Ins(1,4,5)P3-mediated Ca2+ release Unknown 63,64
and DAG generation

VRAP Y951 VEGFR-2 binding Possible adaptor protein Unknown 65

Sck Y1175 VEGFR-2 binding Grb2–Ras–Raf–p42/44 MAPK? Proliferation? 66

PLA2 Ca2+/p42/44 MAPK Prostacyclin production Permeability 67,68

PKC PLC-γ-mediated DAG Raf–p42/44 MAPK eNOS Proliferation 69,70

PI3K Unknown adaptor protein Rac, Akt activation Migration, survival 71

Akt PI3K–PDK Survival pathways (BAD/caspase), Cell survival (anti-apoptotic), 71

phosphorylation of eNOS permeability, migration 72–74

Src VEGFR-2 binding PLC-γ? NO? Permeability? 75

p38 MAPK Unknown mechanism Actin polymerization Migration? 76

FAK Unknown mechanism Focal adhesion formation Migration? 77

eNOS Akt, Ca2+ NO-mediated cGMP generation, Proliferation, 78,79
leading to PKG activation, permeability, migration 68,74
Raf–p42/44 MAPK activation

aAbbreviations: DAG, sn-1,2-diacylglycerol; Ins(1,4,5)P3, inositol (1,4,5)-trisphosphate; FAK, focal adhesion kinase; Grb2, growth factor receptor-bound 2; NO, nitric oxide;
eNOS, endothelial nitric oxide synthase; MAPK, mitogen-activated protein kinase; PI3K, phosphoinositide 3-kinase; PKC, protein kinase C; PKG, protein kinase G; PLA2, 
phospholipase A2; PLC-γ, phospholipase C-γ; Sck, Shc-like protein; VEGFR-2, vascular endothelial growth factor receptor 2; VRAP, VEGF receptor-associated protein.
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that normal and tumour endothelium are genetically
very similar. However, 79 genes were differentially
expressed with the levels of 46 being specifically
elevated in tumour-associated endothelium. These
important data identify, for the first time, a genetic
angiogenic phenotype.

The advent of microarray technology and serial
analysis of gene expression (SAGE), where gene

profiles for specific growth factors can be studied, will
enable the identification of the crucial angiogenic
genes whose expression are regulated by FGF and
VEGF, and the signalling pathways involved. Such
knowledge will herald a new era in angiogenic
signalling and facilitate the generation of angiogenic
inhibitors that can specifically target the tumour
vasculature.

Review

Table 3. Inhibitors of FGF and VEGF function in anti-angiogenic treatment

Compound Mechanism of action Company Clinical phase Refs 

Anti-VEGF humanized mAb Sequestration of VEGF Genentech Phase II/III 80

Anti-VEGFR-2 Ab Inhibition of VEGFR-2 activation Imclone Phase I 80

Angiozyme Ribozymes that target VEGFR mRNA Ribozyme pharmaceuticals Phase I/II 80

Soluble VEGFR-1 Sequestration of VEGF Genentech Preclinical 80

SU5416 Inhibition of VEGFR-2 kinase activity Sugen Phase I/II/III 48

SU6668 Inhibition  of VEGFR, PDGFR and FGFR kinase activity Sugen Phase I 47

ZD4190 Inhibition of VEGFR kinase activity AstraZeneca Phase I 80

CGP41251 Inhibition of VEGFR kinase activity Novartis Phase I 80

PTK787/ZK22584 Inhibition of VEGFR kinase activity Novartis Phase I/II 80

Interferon α Inhibition of FGF-2 production – Phase II/III 47

Thalidomide Inhibition of FGF-2-mediated angiogenesis Celgene Phase II 48

Platelet factor 4 Interaction with heparin binding to FGF-2 and VEGF165 47
aAbbreviations: Ab, antibody; mAb, monoclonal antibody; FGF, fibroblast growth factor; FGFR, fibroblast growth factor receptor; PDGFR, platelet-derived growth factor
receptor; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor.
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