Calcium-dependent gating of Voltage-gated ion channels

Ca2+ Ions Transduce Signals

Ca2+ current controls the plateau phase of the cardiac action potential
Ca2+ channels control neurotransmitter release

Ca2+ channels regulate gene expression in hippocampal neurons

Ca2+ channel Structure
Family of Voltage-Gated Ca$^{2+}$ Channels

- L-type
- T-type
- P/Q-type
- N-type
- R-type
- T-type

Ca$^{2+}$-dependent gating of the L-type Ca$^{2+}$ Channel

Ca$^{2+}$ channels control the plateau phase of the cardiac action potential
The permeating ion affects Ca\(^{2+}\) channel inactivation: Calcium Dependent Inactivation (CDI)

Calcium Entry Leads to Inactivation of Calcium Channel in Paramecium

CDI: accelerated inactivation with Ca\(^{2+}\)

Calcium Dependent Inactivation: A Ca\(^{2+}\)-regulated feedback mechanism

- Ca\(^{2+}\) entering through channel
- Requires no cytoplasmic components
 - Ca\(^{2+}\) sensor is near channel pore
- Develops rapidly
CDI is greatest at membrane potentials eliciting peak inward Ca2+ current.

Conditional Open Probability Analysis (COPA)

- No inactivation
- Inactivation
Conditional open probability analysis (COPA): Ca\(^{2+}\) entry enhances inactivation

![Graph showing conditional open probability analysis (COPA) with Ba\(^{2+}\) and Ca\(^{2+}\) entry enhancements.]

CDI in L-type channels reconstituted in bilayers

- Requires no cytoplasmic components

![Graph showing CDI in bilayers with Ca\(^{2+}\) sensing apparatus within or near Ca\(_{v}1.2\) (\(\alpha_{1C}\)) pore]

Ca\(^{2+}\) sensing apparatus resides within or near Ca\(_{v}1.2\) (\(\alpha_{1C}\)) pore

- Rapid effects (< 5 msec)
- CDI in bilayers
- Minimal effects of Ca\(^{2+}\) chelators
A region of α_{1C} is necessary and sufficient

Does Ca$^{2+}$ bind directly to the α_{1C} subunit?
Ca$^{2+}$-binding in the EF-hand is **not** necessary

Identification of critical region(s) in the C-terminus
IQ motif / calmodulin (CaM) binding domain: CaM as the Ca2+ sensor

IQ motif is the CaM effector site

CaM binds to the IQ motif in the C-tail
CaM is constitutively bound to α_{1C}

Comparison of cation binding affinities of Calmodulin EF hands

<table>
<thead>
<tr>
<th>Cation</th>
<th>Ca^{2+}</th>
<th>Sr^{2+}</th>
<th>Ba^{2+}</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC$_{50}$ values (µM)</td>
<td>>1000</td>
<td>25</td>
<td>2.5</td>
</tr>
</tbody>
</table>

CDI correlates with the affinity of the divalent ion for CaM

Calcium Dependent Inactivation of L-type Ca$^{2+}$ Channels

- Calmodulin is the Ca$^{2+}$ sensor
- CaM is pre-associated with α_{1C}
- The IQ motif is the effector domain in α_{1C}
- The EF-hand is a structural, non Ca$^{2+}$-sensing domain
Gene expression in hippocampal neurons:
LTCs and CaM

Ca$^{2+}$-dependent gating of
P/Q-type Ca$^{2+}$ Channels

CDI and CDF in P/Q channels
CaM is the Ca\(^{2+}\) sensor?

Different kinetics: different effector site?

Different kinetics: different Ca\(^{2+}\) sensor?
Ionic Dependence of I_{pCa} Inactivation

is it really CaM?

Neuron, Vol. 20, 797–807, April, 1998

>1000 ~ 25 ~ 2.5
PDE activity via CaM

τ

88.5 ± 8.6

48.8 ± 2.9

67.5 ± 5.4

57.8 ± 4.9

67.3 ± 4.6

$<$ 2.5

>25

$>$ 1000

Calcium Dependent Gating of P/Q Ca$^{2+}$ Channels

• Kinetics of inactivation and facilitation differ from L-type channel gating
• Calmodulin appears to be the Ca$^{2+}$ sensor and the IQ motif is one effector domain in α_{1A}
• CBD may be another effector domain
• The Ca$^{2+}$-binding protein CaBP1 regulates inactivation in a Ca$^{2+}$-independent manner

Ca$^{2+}$-dependent gating of SK channels

I_{AHP}

Tonic spiking
Ca\(^{2+}\)-dependent gating of SK channels

CaM is the Ca\(^{2+}\) sensor

CaM is the Ca\(^{2+}\) sensor
Ca²⁺/CaM modulation of CNG channels

Adaptation

Mechanism of Action

Loss of auto-excitatory interaction
Other channels

• NMDA subtype of excitatory glutamate receptors

• BK_{Ca} channels