

Pharmacokinetics

- Pharmacokinetics of Local Anesthetics
 - Uptake
 - -Oral Route
 - Topical Route
 - Injection
 - Distribution
 - Metabolism (Biotransformation)
 - Excretion

Uptake

- Vasoactivity
 - Local anesthetic affect local blood vessels in the area injected
 - Most produce vasodilation
 - Ester anesthetics are more potent vasodilators
 - Cocaine is the only local anesthetic that consistently produces vasoconstriction
 - Initial action produces vasodilation (inhibition of the uptake of catecholamines (NE) into tissue binding sites, leading to xs of free NE causing a prolonged and intense state of vasoconstriction

So what? ■ Vasodilation → Increases the rate of absorption of the local an blood - decreasing the duration of - increasing the anesthetic potential for overdose

Oral Route

- Local anesthetics (other than cocaine) are absorbed poorly from the GI tract
- Most undergo significant hepatic fist-pass effect
- Topical Route
 - Where intact skin is present, topical application does not provide anesthetic action, but if damaged or not present, it does (eg. Sunburn, mucosa)
- Injection
 - Uptake is dependent upon the injection site's vascularity and the drug's vasoactivity

Distribution

- Once absorbed into the blood, local anesthetics are distributed to all body tissues.
- Blood level of the local anesthetics
 - Rate of drug absorption into the cardiovascular system
 - Rate of drug distribution from the vascular component to the tissues
 - Elimination of the drug through metabolic/excretory pathways

Decrease

blood levels

of Local

Anesthetics

Metabolism - Esters

- Ester local anesthetics are hydrolyzed in the plasma by psuedocholinesterase
- Allergic reactions are usually not to the ester local anesthetic, but to PABA

Metabolism - Amides

- Primary site of biotransformation is the liver
- Liver function and hepatic perfusion influence the rate of biotransformation
 - Patients with lower than usual hepatic blood flow (hypotension, congestive heart failure) or poor liver function (cirrhosis) are unable to biotransform amide local anesthetics at a normal rate
- The products of biotransformation can have clinical effects
 - Lidocaine
 - Prilocaine or Articaine

Absolute and Relative Contraindications

- Absolute under no conditions may the offending drug be administered to the patient
 - eg. allergy
- Relative it is preferable to avoid administration of the drug because of an increased risk that tan adverse response will develop

Excretion

- Kidneys are the primary excretory organ for both the local anesthetic and its metabolites
- A percentage is excreted unchanged in urine (lower % in esters than in amides)
- Patients with significant renal impairment may be unable to eliminate the local anesthetic compound or its metabolites from the blood

Systemic Actions

- The central nervous system and the cardiovascular system are the most susceptible
- Systemic actions are related to the blood level (plasma level)
- The blood level of the anesthetic depends on its rate of uptake and on the rate of distribution and biotransformation

Central Nervous System

- Local anesthetics cross the blood-brain barrier
- They cause CNS depression
- At therapeutic levels there are no significant CNS effects
- At toxic levels, there are! → seizure

preconvulsive signs and symptoms

- Signs
- Slurred speech
- Shivering
- Muscular twitching
- Tremor in muscles of face and extremities
- Symptoms
 - Numbness of tongue and circumoral region
 - Warm, flushed feeling of skin
 - Pleasant dreamlike state
 - Generalized lightheadedness
 - Dizziness
 - Visual disturbances
 - Auditory disturbances
 - Drowsiness
 - Disorientation

- Lidocaine and procaine toxicity may present initial mild sedation instead of the excitatory symptoms
- If either excitation or sedation is observed in the initial 5 to 10 minutes after administration of local anesthetic
 → be aware

Cardiovascular

- Local anesthetic action decreases:
 - Electrical excitability of the myocardium
 - Conduction rate
 - Force of contraction
 - Therapeutically advantageous in managing dysrythmias (PVCs, ventricular tachycardia)

Local Tissue Toxicity

- Intraoral injection of lidocaine, mepivacaine, prilocaine and bupivacaine can produce alterations in the skeletal muscle.
- Longer-acting local anesthetics cause more localized skeletal muscle damage than shorter-acting drugs
- Reversible → Muscle regeneration is usually complete within 2 weeks

Respiratory System

- At lower levels, local anesthetics have a direct relaxant action on bronchial smooth muscle
- At overdose levels, they may produce respiratory arrest as a result of generalized CNS depression

Clinical Manifestations of Local Anesthetic Overdose

- Signs
 - + Low to moderate overdose levels
 - Confusion, talkativeness, apprehension, excitedness, slurred speech, stutter
 - Muscular twitching, tremor of the face/extremities, nystagmus
 - Elevated blood pressure, heart rate and respiratory rate
 - Moderate to high blood levels
 - Generalized tonic-clinic seizure, followed by:
 - Generalized CNS depression
 - Depressed blood pressure, heart rate and respiratory rate

Clinical Manifestations of Local Anesthetic Overdose

- Symptoms
 - Headache
 - Lightheadedness
 - Dizziness
 - Blurred vision, unable to focus
 - Ringing in ears

- tongue and perioral tissues

 - Flushed or chilled feeling
- Drowsiness
- Disorientation
- Loss of consciousness

Vasoconstrictors

■ Drugs that constrict blood vessels → control tissue perfusion

anesthetic solutions to

oppose vasodilating

Added to local

actions

- Decrease blood flow (perfusion to the site of injection)
- Absorption is slowed
- Lower blood levels
- Decreased risk of toxicity
- More remains in and around the nerve → increases duration of action
- Decreased bleeding at injection site

- Chemically identical or similar to the sympathetic nervous system mediators epinephrine and norepinephrine
- Action is similar to response of adrenergic nerves to stimulation and therefore they are classified as sympthomimetic or adrenergic drugs

Modes of Action

- Direct acting drugs
 - Act directly on the adrenergic receptors
- Indirect acting drugs
 - Act by releasing norepinephrine from adrenergic nerve terminals
- Mixed-acting drugs
 - Act both directly and indirectly

Adrenergic Receptors

- α-receptors
 - Activation by sympthomimetic drug produces a response that includes the contraction of smooth muscle in blood vessels (vasoconstriction)
- β-receptors
 - Activation produces smooth muscle relaxation and cardiac stimulation

Dilution of Vasoconstrictors

- Usually a ratio
 - eg. 1 to 1000 (1:1000)
- Maximum doses presented in miligrams
- 1:1000 means that there is 1 gram (1000mg) of solute (drug) contained within 1000mL of solution → a 1:1000 dilution contains 1000 mg in 1000mL or 1.0mg/mL of solution

Dilution for dental local anesthetics

- Significantly lower concentrations than 1:1000
 - For epinephrine 1:100,000 or 1:200,000
 - 1:100,000 = 0.01 mg/mL = 10 µg/mL
 - 1:200.000 = 0.005 mg/mL = 5 µg/mL

Epinephrine

- Absorbed from the site of injection
 - Measurable blood levels are obtained
 - Resting plasma levels are doubled following the administration or one cartridge of lidocaine with epi 1:100,000
 - The elevation of epi plasma level is dosedependents and may persist for 30 min

Epinephrine

- Cardiovascular dynamics overall → direct stimulation
 - Increased systolic and diastolic pressures
 - Increased cardiac output
 - Increased stroke volume
 - Increased heart rate
 - Increased strength of contraction
 - Increased myocardial oxygen consumption

These actions lead to an overall decrease in cardiac efficiency

Epinephrine

- Metabolism
 - Epinephrine increase oxygen consumption in all tissues
 - Stimulates glycogenolysis in the liver and skeletal muscle
 - Elevates blood sugar levels
 - The equivalent of four dental anesthetic cartridges of 1:100,000 epinephrine will elicit this response

Epinephrine

- Termination of action and Elimination
 - Primarily by reuptake by the adrenergic nerves
 - The remaining epi is inactivated in the blood by enzymes
 - Catecho-O-methlytransferase (COMT)
 - Monoamine oxidase (MAO)
 - Small amounts are excreted unchanged in the urine

Epinephrine – Maximum Doses

- Normal, healthy patient: 0.2 mg per appointment
 - 10 mL of a 1:50,0000 dilution (5 cartridges)
 - 20 mL of a 1:100.000 dilution (11 cartridges)
 - 40 mL of a 1:200,000 dilution (22 cartridges)

Epinephrine – Maximum Doses

- Patient with clinically significant cardiovascular disease (ASA III or IV): 0.04 mg per appointment
 - 2 mL of a 1:50,000 dilution (1 cartridge)
 - 4 mL of a 1:100,000 dilution (2 cartridges)
 - 8 mL of a 1:200,000 dilution (4 cartridges)

Other vasoconstrictors

- Norepinephrine (Levarterenol)
 - Produces significant peripheral vasoconstriction and possible elevation of blood pressure
 - Side effect ratio 9x higher than epinephrine
- Phenylephrine (Neo-Synephrine)
 - Pure α-adrenergic agonist
 - In clinical trials, peak blood levels of lidocaine were higher with phenylephrine 1:20,000 than with epi 1:200,000
- Lefonordefrin (Neo-Cobefrin)
 - Effects similar to norepinephrine
- Octapressin (Felypressin)
 - Effects similar to epinephrine

Levonordefrin (Neo-Cobefrin)

- Acts through direct α receptor stimulation (75%) with some β activity (25%)
- Less cardiac and CNS stimulation than epinephrine
- Similar side effects to epi, but to a lesser degree
- Available with mepivacaine or propoxycaine/procaine in a 1:20,000 dilution

Levonordefrin (Neo-Cobefrin)

- Maximum doses
 - At one sixth (15%) the vasopressor effectiveness of epinephrine, it is used at a significantly lesser dilution (1:20,000)
 - For all patients the maximum dose should be 1mg per appointment or 20mL of a 1:20,000 dilution *limited by the local anesthetic, not the vasoconstrictor

- Few contraindications to vasoconstrictor administration in the concentrations in which they are found in dental local anesthetics.
- Weigh the benefits and risks of including the vasopressor in against the benefits and risks of using a "plain" anesthetic solution
- Especially with certain groups:
 - Patients with more significant cardiovascular disease (ASA III and IV)
 - Patients with certain noncardiovascular diseases (eg. Thyroid dysfunction, diabetes, and sulfite sensitivity
 - Patients receiving MAO inhibitors, tricyclic antidepressants and phenothiazines

Adding Epinephrine

Maximum Dosages of Vasoconstrictor

TABLE 16-3. Maximum recommended dose of vasoconstrictors (70 kg)

	Healthy	ASA II	ASA III
Epinephrine	3 mcg/kg	1.5 mcg/kg	0.75 mcg/kg
1:100,000	200 mcg max	100 mcg/kg	40 mcg/kg
	(11.1 cart)	(5.5 cart)	(2.22 cart)
Levonordefrin	7 mcg/kg	3.5 mcg/kg	1.5 mcg/kg
1:20,000	(5.4 cart)	(2.7 cart)	(1.2 cart)

Maximum Dosages of Vasoconstrictor

Based on 70kg person

**Healthy patient - 0.2 mg

**Cardiac patient - 0.05 mg

 Dose
 Cartridges

 ■ Epinephrine
 1:50,000 5 (H), 1 (C)

 ■ Epinephrine
 1:100,000 10 (H), 2 (C)

 ■ Epinephrine
 1:200,000 20 (H), 4 (C)

Maximum Dosages of Local Anesthetic

2% Lidocaine
 2% Lidocaine*
 3% Mepivicaine
 0.5% Bupivacaine*
 4% Articaine
 4.5mg/kg (300 mg max)
 5.5mg/kg (500 mg max)
 1.3mg/kg (90 mg max)
 7mg/kg (500)

* with epinephrine

Maximum amount of local anesthesia

- 2% Lidocaine with 1:100,000 epi in a healthy 70 kg male
 - Lidocaine: 7 mg/kg x 70 kg= 490 mg (13.6 carpules)
 - Epinephrine: 3mcg/kg x 70 kg = 0.21 mg (11 carpules)
- Limited by epinephrine dose

Epinephrine Overdose

Symptoms

- Anxiety
- Restlessness
- Headache
- Tremor
- Dizziness
- Sweating
- Pallor
- Palpitations
- Respiratory difficulty

Signs

- Elevated BP (systolic)
- Increased HR
- Abnormal rhythm
- Cardiac conduction abnormalities
- Cardiac dysrhythmias
- Cardiac arrest