Pulp Therapy in Primary and Young Permanent Teeth

- Steven Chussid DDS
 - Director, Division of Pediatric Dentistry
 - Columbia University School of Dental and Oral Surgery

Primary Teeth

- Diagnosis and Treatment Planning
Primary Tooth Anatomy

- Smaller in all dimensions, but pulp relatively larger
- Enamel thinner
- Great variation in size and shape of pulp
- Pulp horns slender and closely follow external anatomy of tooth
- Pulp chambers shallow and easily perforated
- Apical foramina large and accessory canals may be large and numerous

Diagnosis

- History of pain
- Radiographic evaluation
- Clinical exam
- Evaluation of exposure site

History of pain

- Duration
 - Longer duration offers poorer prognosis
- Frequency
 - Spontaneous pain is sign of poorer prognosis
 - Related frequency of pain to specific stimuli
- Location
 - Localization often difficult in children

Pain and pulpal status

- Spontaneous
- Nocturnal → Irreversible → Nonvital
- Constant
- Thermal
- Chemical → Reversible → Vital
- Intermittent
Vital pulp therapy

- Protective base
 - An appropriate material is placed to seal dentinal tubules and act as a protective barrier to minimize pulp injury and permit the pulp to heal

Pulp therapy in primary teeth

- Vital pulp therapy
 - Protective base
 - Indirect pulp therapy
 - Direct pulp cap
 - Pulpotomy
- Non-vital pulp therapy
 - Pulpectomy
 - Extraction

Protective base

- Objectives
 - Radiopaque base between restoration and dentin
 - Prevent adverse signs and symptoms
 - Preserve health and vitality of restored tooth
Vital pulp therapy

- Indirect pulp therapy
 - In a tooth with a deep carious lesion, carious dentin is not completely removed. The decay process is sealed with glass ionomer.

Indirect pulp therapy

- Objectives
 - Place a radiopaque base over the remaining affected dentin, but not in contact with the pulp
 - Halt the carious process and allow pulp healing and reparative dentin formation
 - Avoid internal resorption or other pathologic changes as determined by periodic clinical and radiographic evaluation
Indirect pulp therapy

- The base that should be used for indirect pulp therapy in the primary dentition is glass ionomer.

Vital pulp therapy

- Direct pulp capping
 - Direct pulp capping is not recommended for carious exposures in primary teeth
 - Can be considered for a small mechanical or traumatic exposure
 - Material of choice for pulp capping in primary teeth is light-cured CaOH
Direct pulp capping

- Objectives
 - Atraumatically place radiopaque base over exposed pulpal tissue
 - Permit pulp healing and reparative dentin formation
 - Prevent further pulpal damage and avoid clinical signs and symptoms
 - Avoid pathologic changes as determined by periodic radiographic evaluation

Pulpotomy

- Objectives
 - To eliminate or neutralize the effect of pulp involvement by caries or trauma
 - To avoid future adverse clinical signs and symptoms
 - There should be no sign of internal resorption, periradicular breakdown, or other pathology

Vital pulp therapy

- Pulpotomy
 - Administer local
 - Isolate
 - Excavate caries
 - Remove roof of pulp chamber to gain access
 - Inspect pulp chamber
 - Hemostasis
 - No evidence of coronal tissue tags
 - Treatment of remaining radicular pulp
Pulpotomy

- Non-pharmacotherapeutic
 - Amputate infected or affected coronal pulp tissue
 - Treat remaining radicular pulp tissue with electrical or laser energy source in such a way as to reduce or eliminate the residual infectious process
Pulpotomy

Pharmacotherapeutic

Inductive
- Treatment of exposed radicular tissue in such a way as to induce reparative dentin and maintain vitality and function of the majority of remaining pulp tissue

Non-inductive
- Treatment of exposed radicular tissue with a medication or fixative aimed to eliminate or neutralize any infectious process

Pulpotomy

Pharmacotherapeutic

Inductive
- Calcium hydroxide
- Glass ionomer
- Ferric sulfate

Non-inductive
- Formocresol
- Gluteraldehyde

Ferric sulfate

- Topical hemostatic solution
- Astringedent®- 15%
Glutaraldehyde
- Powerful fixing agent
- Antibacterial
- Large molecules with less chance of systemic distribution
- Concentration 2-5%
 - Most success with 4%

Glutaraldehyde
- Binds to enzymes and proteins
- Suppresses cell activity
- Non diffusible and self limiting
- Non-immunologic, non-mutanogenic, non-carcinogenic
- Reported side effects include: radiographic changes, delayed tissue healing, enamel defects, tissue degeneration, autoantibody induction

Formocresol
- Actions
 - Bactericidal
 - Fixation
 - Progressive fibrosis

Formocresol
- Buckley’s formocresol usually used in 1:5 dilution
- Hemostasis of radicular pulp tissue should be obtained prior to applying formocresol
- Pellet should be blotted dry then placed in pulp chamber for 5 minutes
- A ZOE or glass ionomer base is then placed

Formocresol
- Reported undesirable effects
 - Leakage into hard and soft tissue
 - Mutagenic and carcinogenic potential has been shown in animal studies
 - Enamel hypoplasia
 - Over retention
 - Ectopic eruption of permanent teeth
 - Hypomineralization
Nonvital pulp therapy

- Pulpectomy
- Extraction

Objectives
- Remove as much necrotic pulp as possible in context of succedaneous tooth and root architecture
- Reverse infectious process allowing periapical tissue to heal
- No adverse signs or symptoms
- No further breakdown of supporting structures
- Demonstrate evidence of successful fill
- Resorption of filling material and tooth structure should occur normally

Pulpectomy in primary teeth

Pulpectomy procedure

- Administer local
- Isolate
- Excavate caries
 - Remove as much caries as possible before entering pulp
- Remove entire roof of chamber to gain access
- Debride canals
 - Canals of primary teeth should not be enlarged

Pulpectomy procedure cont’d

- Irrigate canals carefully
- Sterile saline
- Local anesthesia
- Sodium hypochlorite
- Obtrate canals
 - ZOE or iodoform paste
 - Can be placed with hand condenser, syringe or lentulo spiral
- Radiographic evaluation
- Restore tooth
Pulpectomy

- One step versus two step procedure
- Should be strategic tooth
- More signs and symptoms=less chance for success
- Consider medical history
 - Immunocompromised?
 - Cardiac problems?
 - Bleeding problems?
- Fistula is not a contraindication, but make prognosis poorer
Success rates
- Indirect pulp treatment
- Pulpotomy
- Pulpectomy

Extraction
- Indications
 - Infectious process cannot be arrested
 - Bony support cannot be maintained
 - Inadequate tooth structure remaining for restoration
 - Remaining root structure will not support crown

Permanent teeth
- Vital pulp therapy
 - Protective base
 - Indirect pulp therapy
 - Direct pulp capping
 - Pulpotomy
 - Apexogenesis
- Non-vital pulp therapy
 - Apexification
 - Pulpectomy
 - Extraction

Vital pulp therapy
- Protective base
 - An appropriate material is placed to seal dentinal tubules and act as a protective barrier to minimize pulp injury and permit the pulp to heal

Protective base
- Objectives
 - Radiopaque base between restoration and dentin
 - Prevent adverse signs and symptoms
 - Preserve health and vitality of restored tooth
Vital pulp therapy

- Indirect pulp therapy
 - In a tooth with a deep carious lesion, carious dentin is not completely removed. The decay process is sealed with glass ionomer.

Direct pulp therapy

- Objectives
 - Place a radiopaque base over the remaining affected dentin, but not in contact with the pulp
 - Halt the carious process and allow pulp healing and reparative dentin formation
 - Avoid internal resorption or other pathologic changes as determined by periodic clinical and radiographic evaluation
 - Restore tooth and observe, re-entering only if symptoms arise

Direct pulp capping

- Objectives
 - Atraumatically place radiopaque base over exposed pulpal tissue
 - Permit pulp healing and reparative dentin formation
 - Prevent further pulpal damage and avoid clinical signs and symptoms
 - Avoid pathologic changes as determined by periodic radiographic evaluation

- Indications
 - Small carious exposure
 - Short standing mechanical or traumatic exposure
 - Light cured calcium hydroxide
Partial (Cvek) Pulpotomy

- Preserves cell rich coronal pulp
- Increased healing potential
- Physiologic apposition of tertiary dentin
- Obviate need for RCT
- Natural color and translucency preserved

Partial Pulpotomy

- Conservatively enlarge exposure site
- Remove 1-2 mm of pulp tissue
- Irrigate
- Evaluate health of pulp tissue
- Gently apply calcium hydroxide dressing

Pulpotomy

- Inductive Pharmacotherapeutic
 - Treatment of exposed radicular tissue in such a way as to induce reparative dentin and maintain vitality and function of the majority of remaining pulp tissue
- Objectives
 - To eliminate or neutralize the effect of pulp involvement by caries or trauma
 - To avoid future adverse clinical signs and symptoms
 - There should be no sign of internal resorption, periapical breakdown, or other pathology
Apexogenesis

- Goal-continued root development
- Remove coronal portion of pulp
- Place agent to preserve radicular vitality
- Monitor
- RCT?

Apexification

- Goal-apical closure
- Remove necrotic tissue short of apexification site
- Irrigate
- Dry well
- Place thick paste of calcium hydroxide

Apexification

- Leave treatment paste for about 6 months
- Evaluate for “positive stop” in apical area
- RCT or retreat with CaOH
- Long term prognosis

Calcium Hydroxide

- Bactericidal
- Low grade irritation inducing hard tissue barrier formation
- Dissolve necrotic debris