Implant Procedure Concepts

Pacemaker, ICD and CRT Overview

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Disclaimer</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Objectives</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>RA & RV Lead Placement</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>Troubleshooting</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>Questions</td>
<td></td>
</tr>
</tbody>
</table>
This presentation is provided with the understanding that the slide content must not be altered in any manner as the content is *subject to FDA regulations*.

This presentation is to be used in conjunction with other resource material including the applicable Boston Scientific device *physician’s manual* and any *implant accessories instructions* for use.

This presentation is *not intended to replace implant training*.

Proper surgical procedures and techniques are the responsibilities of the medical professional.

If this presentation is not used in its entirety, the following information must be included:

- Appropriate Indications
- Contraindications
- Warnings
- Precautions and Adverse Events
Objectives

When we complete this program you will be able to:

- **List** the primary difference between a pacemaker and an implantable cardioverter defibrillator (ICD)

- **Identify** the purpose of a biventricular pacing/defibrillation system

- **Explain** the differences between magnet response in a pacemaker vs. an ICD

- **List** one medical procedure that is not recommended for patients with implanted devices
Pacemaker

Purpose
Maintain rhythm (bradyarrhythmias)

Selections
- Single or dual chamber
- Rate-responsive or sensor-driven abilities
- Longevity
- Size
Implantable Cardioverter Defibrillator (ICD)

Purpose

Break fast arrhythmias (tachyarrhythmias) — all ICDs have pacemakers

Selections

- Single (ventricular) or dual chamber models
- Rate-responsive or sensor-driven abilities
- Size
- Longevity
Biventricular or Cardiac Resynchronization Therapy (CRT)

Purpose
- CRT/CRT-D improves the symptoms of heart failure
- Involves placement of three leads (right atrium, right ventricle and left ventricle)
- Goal is to pace the ventricles 100%

Selections
Both pacemaker and ICD/pacemaker options available
Biventricular Lead Placement

Pacemaker, ICD, and CRT Overview

Disclaimer
Objectives
RA & RV Lead Placement
Device Differentiators
LV Lead Placement
Magnets
Troubleshooting
Precautions
Summary / Questions
How do magnets affect implantable devices?

- Application of a magnet affects all pacemakers and ICDs
- Pacemakers and ICDs respond differently
- Doughnut, horseshoe or rectangular magnet shapes will work on most devices (however, a doughnut magnet will work with all devices)
What happens when a magnet is applied to a pacemaker?

- Cause the device to pace in a DOO, VOO, or AOO mode depending on programming

- Pacing rate is dependent on the company and model (but usually 80-100)

- Output is usually the programmed output
What happens when a magnet is applied to an ICD?

- Will inhibit tachy therapy when magnet is present
- Does not affect the pacing settings or the ability of the device to pace and sense
So do we really need to use magnets?

Note: Use caution for your pacer-dependent patient if cautery is used.
Troubleshooting

“I don’t see any pacer spikes, the device isn’t working right.”

- There are several features in devices that may affect pacing function
- Telemetry can interfere with pacing spike display
- Main concern should be whether or not the rhythm is regular and safe for the patient
Troubleshooting

“I think that something is wrong, what should I do now?”

- Determine if the patient has an ICD, Pacemaker, or both
- Determine the company of patient’s device
 - Contact appropriate rep or technical services for quicker service
- Record rhythm strips to illustrate the problem you are seeing
- Gather as much information as possible with regard to device settings
Knowing just a few of the device settings can give you a lot of information about how the device should be operating.

- **Pacing mode**
- **Lower rate limit (LRL)** – slowest the rhythm should be allowed to go
- **Upper rate limit (URL, MTR, MSR)** – maximum rate the pacemaker is allowed to pace
- **AV delay** – the PR interval of the device
Common Questions

- Pacing into the QRS complex
 - Indicates a potential oversensing or undersensing issue
 - Can also be fusion between the pace complex and the intrinsic complex
Troubleshooting

Common Questions

- Patient is in VT but device is not doing anything, what should I do?
 - Use your medical judgment, if patient is unstable don’t wait for the device to act, proceed with external cardioversion
 - Contact the company to have device interrogated
Items that are considered safe

- Microwave ovens
- Televisions, VCRs
- AM/FM Radios, CD players
- Table top appliances (toasters, blenders, can openers, etc.)
- Hand-held appliances (shavers, hair dryers, etc.)
- Electric blankets, heating pads
- Personal computers
- Fax/copy machines
Items that are considered safe at a distance

- Stereo speakers
- Slot machines
- Chain saws
- Hedge clippers
- Arc welders
- Battery-powered tools
- Running motors/alternators

12+ inches away
Precautions

Cell Phones

- Hold the cell phone on the opposite side
- Do not carry the active phone near the device
Metal Detectors / Security Systems

- Walk through the systems at a normal pace
- Do not lean against the system
- If scanning with a hand-held metal detector is required
 - Inform the security personnel of the implanted electronic medical device
 - Show implant card

Photo courtesy Federal Aviation Administration (FAA)
EMI from Medical Devices

- Electrocautery
- Cardioversion
- TENS (Transcutaneous electrical nerve stimulation)
- Radio Frequency Ablation
- Therapeutic radiation
- Magnetic Resonance Imaging (MRI)