

Social Behavior in C. elegans.

- Mutation in a neuropeptide-Y-like protein; the NPR-1 receptor. In mammals, important for "feeding".
- Clumping is controlled by an unknown neuropeptide acting through the receptor.
- Secretion of the neuropeptide is probably regulated by food.

• Proposed Model:

Dispersing strains have a repellant response (mediated by NPR-1 receptor) that masks the attractant response.

The Sleep Disorder Canine Narcolepsy is Caused by a Mutation in the Hypocretin (Orexin) Receptor 2 Gene. L. Lin et al., Cell 98 365 1999

Narcolepsy in orexin Knockout Mice: Molecular Genetics of Sleep Regulation.

RM Chemelli et al., Cell 98, 437 1999

Narcolepsy: debilitating, neurological disorder characterized by:

- Sleep attacks
- Episodic loss of muscle tone (cataplexy)
- Hypnogogic hallucinations
- Abnormal sleep-wake cycle

The Sleep Disorder Canine Narcolepsy is Caused by a Mutation in the Hypocretin (Orexin) Receptor 2 Gene. L. Lin et al., Cell 98 365 1999

Reduced Number of Hypocretin Neurons in Human Narcolepsy TC Thannickal et al., Neuron 27; 469 2000

Distribution of Cells in Perifornical and Dorsomedial Hypothalamic Regions of Normal and Narcoleptic Humans

- On average, narcoleptics have 7% of the *Hcrt* cells seen in normals
- C and D low power covering regions shown in grey at top
- E and G normal subjects
- F and H narcoleptic subjects
- Most human narcolepsy is NOT familial; is discordant in identical twins; and NOT linked to mutations in hypocretin.

Narcolepsy: summary

Hypothetical Effect of Blunted Hcrt Activation:

- Monoaminergic Nuclei of the Brainstem: induce cataplexy.
- 2. Cholinergic Brainstem and Basal Forebrain: cause sleepiness associated with narcolepsy.
- Dense Hert Projections to the Suprachiasmatic Nucleus: reduced amplitude of circadian sleep rhythms, and thereby increased sleepiness during the day and interrupted sleep at night.

The Essential Role of Hippocampal CA1 NMDA Receptor-Dependent Synaptic Plasticity in Spatial Memory JZ Tsien, PT Huerta, and S. Tonegawa, Cell 87 1327 1996.

Summary of Hippocampal Studies since 1957:

- 1. Required for certain kinds of memory; spatial in rodents; facts and faces in humans
- 2. Rodent hippocampal neurons are "place cells"; 'fire' when animal moves into marked area.
- 3. Hippocampal synapses exhibit LTP (paradigm for synaptic plasticity).
- <u>Tsien et al:</u> use cre/loxP recombination system to delete NMDA receptor function only in CA1 subregion.
- THUS: By effecting CA1-specific NMDA receptor inactivation, the studies relate synaptic plasticity to neuronal activity (place fields) and to spatial learning.

The Essential Role of Hippocampal CA1 MNDA Receptor-Dependent Synaptic Plasticity in Spatial Memory

JZ Tsien, PT Huerta, and S. Tonegawa, Cell 87 1327 1996.

<u> </u>	
-	

Table 3-1 Neurological Diseases involving	Trinucleotide Rep	eats ¹	
Disease	Repeat	Repeat length ²	Gene product
X-linked spinal and bulbar muscular atrophy	CAG	Normal: 11~34 Disease: 40–62	Androgen receptor
Fragile X mental retardation ³	CGG	Normal: 6 to -50 Premutation: 52-200 Disease: 200 to >1000	FMR-1 protein
Myotonic dystrophy ³	CTG	Normal: 5-30 Premutation: 42-180 Disease: 200 to >1000	Myotonin protein kinase
Huntington disease	CAG	Normal: 11-34 Disease: 37-121	Huntingtin
Spinocerebellar ataxia type 1	CAG	Normal: 19–36 Disease: 43–81	Ataxin-1
FRAXE mental retardation ³	GCC	Normal: 6–25 Disease: >200	?
Dentatorubral-pallidoluysian atrophy	CAG	Normal: 7–23 Disease: 49–75	?

Most Human Behaviors are Likely to be Genetically Complex: i.e., result from the complex interaction of multiple genes together with non-genetic (environment; stochastic) factors.

Genetics of Autism

Twin Studies

- Monozygotic twins are about 78% concordant for autism and spectrum disorders.
- Dizygotic twins are about 17% concordant. Recurrence Risk
- Approximately 3% of affected probands have an affected sibling with autism (15% for autism + spectrum).
- · Relative risk
- · Recurrence risk/prevalence
- 50-100 fold increase risk to first-degree relatives compared to general population.

-	
-	

Genetics of Autism

- Very high: MZ:DZ twin ratio
- Relatively low: 'sibling-risk' (recurrence risk)
- · Very high: 'relative risk'

Interpretation: Autism is strongly influenced by genetic factors; multiple genes contribute; each single gene effect is probably small; epistatic interactions are likely.

Phenotype might occur due to any of several combinations of mutations, for example mutations in genes 3,8, & 9; or genes 2 & 5. Some or all combinations may be dependent upon environmental factors.

Heritability of Psychiatric Disorders

Degree to which heritable (genetic) factors influence expression of disease or trait

trait	<u> </u>
Schizophrenia	50-60%
Bipolar Disorder	60-70%
Panic Disorder	30-40%
Obsessive-Compulsive Disorder	60-80% (small studies)
ADHD	60%
Reading Disability	50%
Autism (+ spectrum)	90%
Personality	40-60%

Nicotine Addiction

50% for initiation, 70% for

10 yr. persistence

Dopamine D4 receptor (D4DR) exon III polymorphism associated with the human personality trait of Novelty Seeking

Richard P. Ebstein^{1,3}, Olga Novick², Roberto Umansky², Beatrice Priel², Yamima Osher², Darren Blaine¹, Estelle R. Bennett¹, Lubov Nemanov¹, Miri Katz¹ & Robert H. Belmaker² Alzheimer's Disease is currently the best example of a complex disease with known genetic etiology.

Alzheimer's Disease

- Degenerating disorder of the CNS leading to a progressive decline in
- 2. Affects 2-5 million people in the U.S.A.
- 3. Fourth leading cause of death in the U.S.A.
- 4. Patients generally live after onset and often require institutionalized care; 25 billion dollars / year in U.S.A.
- 5. By the early 21st century, due to the increasing rate of life-expectancy, approximately in the U.S.A. will suffer some form of dementia.

Etiology of Alzheimer's Disease

- 1. Classically: considered non-genetic
- 2. Affects: 1/10 over age of 65, 1/3 over age of 85
- 3. Epidemiology Studies: increased risk among relatives of patients with A.D.
- Pedigrees: Autosomal dominant form of inheritance usually characterized by and early age of onset (Familial Alzheimer's Disease).

-				
		_	_	
_	 			
_				

TABLE 1. Genetic Susceptibility loci ili Alzheinier diseas	enetic susceptibility loci in Alzheimer disease
--	---

Chromosome	Gene	Onset	Proportion of cases (%)	Comments
1	Presenilin II	Early	<1	Mainly Volga German
14	Presenilin I	Early	<5	Autosomal dominant
19	APOE	Both	40-50	Dose effect on risk
21	APP	Early	<<1	Autosomal dominant
?	?	Late	=50	Unknown numl of genes

Apolipoprotein E (APOE) and AD

- APOE is a major serum lipoprotein involved in cholesterol metabolism.
- Synthesized in the brain by astrocytes
- In the brain, APOE is thought to be involved in mobolization and redistribution of cholesterol and phospholipid during membrane remodeling associated with plasticity of synapses.

-		

Apolipoprotein E - e4

- e4/e4 AD patients show markedly more APP deposition in plaques relative to non-e4 AD patients
- ApoE e4 binds BA4 peptide with greater avidity than e3 isoform.
- ApoE e4 shows significant allelic association in familial and sporadic late onset AD, and in familial early onset AD.
 - $-\,$ e4 heterozygote is 3X more likely to be affected than e2/e3 or e3/e3
 - e4 homozygote is 8X more likely to be affected

Conclusion: ApoE e4 gene dose is a major risk factor for late (and possibly early) onset AD. Inheritance of two e4 alleles is <u>not</u> necessary and probably <u>not</u> sufficient to cause AD.

-	