Lecture 12 -- Genetic Determinants of Neurological Disorders -- Dauer

I. Neurological Traits/Disorders that Result from Mutations in a Single Gene

All human behavior results from a complex interplay between gene and environment. Our perception of our environment, and our response to a given situation are controlled by the workings of our sensory and motor systems. Genes encode the proteins that comprise these circuits. Therefore, slight differences between the genes of two individuals result in sensory and motor systems that function slightly differently, and hence, in differences in behavior.

A single gene may control a trait or disorder by encoding a protein that affects the function of individual nerve cells in a specific neural circuit. In more complex organisms, the circuitry is more complex and behavioral traits are often shaped by the actions of many genes. Nevertheless, there are examples of single genes strongly influencing complex behaviors.

1. **Phenylketonuria is a Model Example Illustrating the Relationship between Genes and Environment.**

Mutations in phenylalanine hydroxylase lead to a severe impairment of cognitive function and affect 1 in 15,000 children. The enzyme normally converts the amino acid phenylalanine to tyrosine. Individuals who carry one abnormal copy of the gene have no symptoms; thus this is an autosomal recessive disorder. Children who lack both copies of the gene build up high blood levels of phenylalanine, which in turn leads to the production of a toxic metabolite which interferes with normal maturation of the brain.

Phenylketonuria is a clear example of how a person’s phenotype depends on the interaction of genes and environment. A change in diet (limitation of protein intake) can rescue the genetic defect and mental functioning.

2. **Single Genes may Strongly Influence Brain Circuits Involved in Human Emotion.**

Serotonin has been implicated in the regulation of mood states, including depression, anxiety, food intake, and impulsive violence. Several studies link aggressive behavior in animals with decreased activity of serotonergic neurons.

The serotonin transporter is responsible for the “reuptake” of serotonin into the presynaptic cell, thus terminating it’s action within the synapse. An allelic variant of the serotonin transporter occurs in humans called the “short” variant. This is an alteration within the promoter of the gene. People who carry this allelic variant are more likely to suffer depression and anxiety when exposed to stressful life events. Furthermore, functional imaging studies demonstrate that the brains of people with the short variant respond differently to emotional stimuli.

3. **Single Genes May Also Control Complex Behaviors in Simple Organisms.**
Mutations of single genes in Drosophila can produce abnormalities in innate behaviors, such as circadian rhythms. Mutations in either the Per (period) or Tim (timeless) genes affect circadian rhythms. Per and Tim bind as a dimer to enter the nucleus, where they block transcription of themselves as well as other genes. During light hours, Per protein builds up but Tim protein is degraded, thus preventing dimerization, entry into the nucleus, and transcriptional inhibition. After dusk, sufficient Tim protein is produced to form dimers and gene transcription is inhibited. By morning, both Per and Tim proteins have fallen to low enough levels to no longer repress transcription.

Despite the interaction between the two gene products, circadian rhythms are classified as single gene traits rather than multigenic since disruption of a single gene (Per or Tim) disrupts the phenotype. In multigenic traits, disruption of a single gene may predispose to the phenotype but, in the absence of additional gene variants, it does not itself alter the phenotype.

4. Prion Diseases Demonstrate that Mutations in a Single Gene may Cause Neurological Disease, and Different Mutations Within the Same Gene May Cause Distinct Diseases.

Prion diseases are caused by abnormal conformations and aggregation of the prion protein (PrP). Creutzfeldt-Jakob Disease (CJD) is the most commonly encountered prion disease, and is characterized by dementia and abnormal rapid jerking movements, termed myoclonus. This is typically a sporadic disease. However, mutations in the gene encoding the prion protein (PrP) may lead to CJD as well. Different mutations in the PrP gene can lead to different neurological diseases, such as Fatal Familial Insomnia, and Gerstmann-Straussler Scheinker disease. Furthermore, allelic variants of the PrP gene predispose individuals to develop prion disease.

5. Trinucleotide Repeat Mutations in the Huntingtin Gene Result in Huntington’s Disease.

Huntington’s disease (HD) is a rare degenerative disorder of the nervous system characterized by motor and cognitive impairments and death 15-20 years after the onset of symptoms. It is inherited as an autosomal dominant disorder with full penetrance, i.e. a person who inherits the disease mutation always develops the disease.

HD involves the death of neurons in the caudate nucleus, a part of the basal ganglia involved in regulating movements. The function of the Huntingtin gene is not known at this time.

The CAG codon that encodes glutamine is repeated 19-22 times in the normal gene but 48 or more times in the mutated gene. This expansion is “genetically unstable” because DNA polymerase cannot faithfully replicate this region. Subsequent generations often inherit longer stretches of the trinucleotide repeat, a process referred to as “anticipation”.

Hypotheses for the action of the polyglutamines include a gain-of-function that is
destructive to the cell, an alteration in ability, or an increased propensity to bind other
proteins required for normal cellular function.

5a. Other Neurological Disorders Involve Similar Expansions in Trinucleotide Repeats.

Whereas CAG encodes polyglutamine stretches in the coding region of the disease gene,
some disorders result from the upstream or downstream effect of trinucleotide repeat
sequences. Fragile X mental retardation results from long stretches of repeats upstream
of the translational start site of the FMR-1 protein. The resulting altered methylation
patterns silence gene transcription, leading to reduced levels of FMR-1 protein.

II. Most Complex Heritable Phenotypes in Humans are Multigenic.

Multigenic includes both _oligogenic_ and _polygenic_ traits. An oligogenic trait or disorder
is determined by a small number of genes, each contributing to the phenotype in a
significant way. A polygenic trait is the result of many genes, each with a small effect on
the phenotype. Complex trait alleles (gene variants that predispose individuals to
multigenic disorders) predispose to illness rather than cause illness. A multigenic
trait/disorder probably develops from the combination of several predisposing gene
variants together with environmental factors. In some unknown proportion of multigenic
traits/disorders, epistatic protein-protein interactions will be essential. Thus, alterations
in protein X or protein Y may have no effect upon a phenotype, whereas alterations in
both predispose to the trait. In such circumstances, it is possible that complex trait alleles
might reach considerable frequencies in the general population.

Twin and adoption studies are often used to estimate the degree to which a human
phenotype is determined by genetic factors. Identical (MZ) twins share all genes.
Fraternal (DZ) twins, like normal siblings, share (on average) half their genetic
information. Scientists often determine concordance for a given trait/disorder among MZ
twins and then compare this figure with concordance among DZ twins. For a fully
penetrant, single gene disorder such as HD, the MZ ratio is 100% and the DZ ratio is
50%. For complex traits like schizophrenia, MZ twins are about 50% concordant
compared to 18% for DZ twins. From these figures, we can estimate that about 50% of
the normal population variance among patients with schizophrenia is determined by
genetic factors.

The search for gene variants that predispose to multigenic disorders such as
schizophrenia and manic depressive illness has been complicated by a number of factors.
Among complex disorders, Alzheimer’s disease (AD) stands out in terms of relative
success from gene mapping efforts.

AD is a degenerative disorder of the CNS that leads to progressive declines in cognitive
functions. First degree relatives of patients with AD are at somewhat increased risk for
developing illness, indicating a heritable component. Environment plays a key role as well.

AD is characterized by the presence of amyloid plaques at greater than normal age-related density and by the presence of neurofibrillary tangles. A major component of the plaques is a 42 or 43 amino acid peptide (Aβ) which is enzymatically cleaved from amyloid precursor protein (APP), a membrane protein. Individuals with Down’s syndrome inherit an extra complete copy, or segment, of chromosome 21. Such individuals develop AD symptoms in their third or fourth decade with much greater frequency than other individuals. The genetic mapping of APP to the DS segment of chromosome 21, followed by identification of disease-specific mutations in APP in a few families, identified APP as a rare target for AD. Presenilins 1 and 2 are additional targets for single-gene forms of familial AD. Together, APP and the presenilins account for about 5% of all cases of AD.

Genetic linkage studies show that apolipoprotein E (apoE) is linked to risk for common forms of AD. Of the three variant forms of apoE, the apoE4 allele is a significant risk factor for AD. Individuals who inherit one or two copies of the E4 allele have a dose-dependent risk for both earlier age of onset of symptoms and for increased deposits of the Aβ peptide. It is estimated that apoE may account for as much as 50% of the overall genetic risk for developing AD. Typical of multigenic etiology, approximately half of all AD cases have no E4 allele and some individuals with two E4 alleles do not develop AD.

Relevant reading: chapters 3 in “Principles”