Pulmonary Vascular Changes in Heart Disease

- Normal Circulatory Dynamics
 - Physiology
- Pulmonary Hypertension
 - Definition
 - Classification
 - Pathology
 - Pathophysiology
- Clinical Manifestations
- Diagnosis
- Treatment

Normal Circulatory Dynamics After Postnatal Adaptation (I)

Pulmonary Circulation

- Low resistance, high compliance vascular bed
- Only organ to receive entire cardiac output (CO)
- Changes in CO as well as pleural/alveolar pressure affect pulmonary blood flow
- Different reactions compared to the systemic circulation
- Normally in a state of mild vasodilation

Exercise

- Pulmonary blood flow increases up to 4-5x BL
- Increased flow accommodated by both recruitment and vasodilation
- Net effect is a decrease in pulmonary vascular resistance (PVR)
- No further decrease in PVR once all vessels fully recruited and dilated
Physiology: Circulatory Hemodynamics

- **Systemic Circulation**
 - Pressure = Pressure drop across systemic circulation (mmHg) = Systemic Arterial Pressure (SAPm) - Systemic Venous Pressure (RAPm)
 - Flow = Systemic Blood Flow\(^1\) = Cardiac Index (CI; l/min/M\(^2\))
 - Resistance = Systemic Vascular Resistance (SVR; units • M\(^2\))

- **Pulmonary Circulation**
 - Pressure = Pressure drop across pulmonary circulation (mmHg) = Pulmonary Artery Pressure (PAPm) - Pulmonary Venous Pressure (PCWPm)
 - Flow = Pulmonary Blood Flow\(^1\) = Cardiac Index (CI; l/min/M\(^2\))
 - Resistance = Pulmonary Vascular Resistance (PVR; units • M\(^2\))

\(^*\)pressure drop across vascular bed
\(^1\)without congenital systemic to pulmonary shunts

- **Pressure** = Flow x Resistance

Normal Pulmonary Hemodynamics at Sea Level (Rest and Mild Exercise) and at Elevated Altitude (Rest)

<table>
<thead>
<tr>
<th></th>
<th>Sea level Rest</th>
<th>Sea level Mild Exercise</th>
<th>Altitude (~15,000 ft) Rest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulmonary arterial pressure, (mean) mmHg</td>
<td>20/10(15)</td>
<td>30/13(20)</td>
<td>38/14(26)</td>
</tr>
<tr>
<td>Cardiac output, L/min</td>
<td>6.0</td>
<td>12.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Left atrial pressure (mean), mmHg</td>
<td>5.0</td>
<td>9.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Pulmonary vascular resistance, units</td>
<td>1.7</td>
<td>0.9</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Normal Circulatory Dynamics (II)

- **SVC**
- **Pulmonary Veins**
- **IVC**
- **Pulmonary Artery**
- **Pulmonaryartery**
- **RV**
- **LV**
- **Aorta**
- **Pressures in mmHg**
 - O\(_2\) % saturation

Pulmonary Hypertension: Definition

PAP mean \(\geq\) 25 mm Hg at rest or \(\geq\) 30 mmHg with exercise
Pulmonary Hypertension: The Clinical Context

- Precapillary Pulmonary Hypertension
- Postcapillary Pulmonary Hypertension

Localizing the Problem

- Post-capillary

Pulmonary Hypertension: Classification

- PAH pre-capillary
- LH disease post-capillary
- PH
- Lung disease Hypoxemia
- Misc
- CTEPH

Pre-capillary PH: Pulmonary Arterial Hypertension

- Definition
 - PAP mean \(\geq 25 \) mmHg at rest or \(\geq 30 \) mmHg with exercise
 - AND
 - PCWP or LVEDP \(\leq 15 \) mmHg
 - PVRI \(\geq 3 \) units \(\cdot \) m\(^2\)
 - Normal LVEF
 - No left-sided valvular disease

Localizing the Problem

- Pre-capillary
Pulmonary Hypertension - Pre-Capillary (II) (Pulmonary Arterial Hypertension)

- RA
- LA
- RV
- LV
- IVC
- SVC
- Pulmonary Artery
- Pulmonary Veins

Pressures in mmHg
O₂ % saturation
75%
8%
8%
75%
95%
100/60
83
100/25
50/20
35
50/3
95%
95%

Pressure = Flow x Resistance

Pre-capillary PH:
Classification

PAH
- Idiopathic or Familial PAH
- Associated with (APAH)
 - Connective tissue disease
 - Congenital syst-pulm shunts
 - Portal hypertension
 - HIV infection
 - Drugs and toxins
 - Other

High PA pressure and normal “downstream” pressures

Post-capillary PH:
Definition

- PAP mean ≥ 25 mmHg at rest
- or ≥ 30 mmHg with exercise

AND

- PCWP or LVEDP >15mmHg

Post-capillary PH:
Classification

Left-sided atrial or ventricular heart disease

Left-sided valvular heart disease

LH disease
• Left Heart Etiologies
 – Aorta - coarct, stenosis
 – LV -AS, AR, CM, constriction, myocardial disease, MS, MR, ischemic heart disease, congestive heart failure, diastolic dysfunction
 – LA - Ball-valve thrombus, myxoma, cor triatriatum

• Venous Etiologies
 – Pulmonary Veins - stenosis
 – mediastinal fibrosis
 – neoplasm
 – pulmonary veno-occlusive disease

Pulmonary Venous Hypertension

<table>
<thead>
<tr>
<th>Pulmonary arterial</th>
<th>Lung</th>
<th>Pulmonary venous</th>
</tr>
</thead>
<tbody>
<tr>
<td>35 mmHg</td>
<td>No obstruction</td>
<td>25 mmHg</td>
</tr>
<tr>
<td>45-100 mmHg</td>
<td>Pulmonary arteriolar obstruction</td>
<td>25 mmHg</td>
</tr>
</tbody>
</table>

Mixed (Pulmonary Venous and Pulmonary Arterial Hypertension):

Definition

- PAP mean ≥25 mmHg at rest or ≥30 mmHg with exercise
- PCWP or LVEDP >15 mmHg
- PVRI ≥3 units • M²
- Increased Transpulmonary Gradient Across Pulmonary Vascular Bed
Pathophysiology: Rest and Exercise

Pulmonary Hemodynamics

\[\Delta P = R \]

<table>
<thead>
<tr>
<th>Rest</th>
<th>Exercise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>(\frac{15 \text{mmHg}}{5 \text{L/min/M}^2} \times \frac{10 \text{mmHg}}{5 \text{L/min/M}^2} = 30 \text{units})</td>
</tr>
<tr>
<td>PAH (Pre-Cap)</td>
<td>(\frac{50 \text{mmHg}}{5 \text{L/min/M}^2} \times \frac{10 \text{mmHg}}{8 \text{L/min/M}^2} = 8 \text{units})</td>
</tr>
<tr>
<td>Pulm Venous PH (post-cap)</td>
<td>(\frac{35 \text{mmHg}}{5 \text{L/min/M}^2} \times \frac{25 \text{mmHg}}{2 \text{L/min/M}^2} = 2 \text{units})</td>
</tr>
<tr>
<td>Mixed PH (Pre-cap & Post-cap)</td>
<td>(\frac{50 \text{mmHg}}{5 \text{L/min/M}^2} \times \frac{25 \text{mmHg}}{8 \text{L/min/M}^2} = 5 \text{units})</td>
</tr>
</tbody>
</table>

Pathology: Pulmonary Vascular Disease

Heath Edwards Classification

- Grade 1 - Medial hypertrophy in the small pulmonary arteries.
- Grade 2 - Concentric or eccentric cellular intimal proliferation and thickening within the smaller pulmonary arteries and arterioles.
- Grade 3 - Relatively acellular intimal fibrosis with accumulation of concentric or eccentric masses of fibrous tissue leading to wide spread occlusion of the smaller pulmonary arteries and arterioles.
- Grade 4 - Progressive, generalized dilatation of the muscular arteries and the appearance of plexiform lesions, complex vascular structures composed of a network or plexus of proliferating endothelial tissue, frequently accompanied by thrombus, within a dilated thin-walled sac.
- Grade 5 - Thinning and fibrosis of the media superimposed upon the formation of numerous complex dilatation lesions.
- Grade 6 - Necrotizing arteritis within the media with surrounding areas of inflammatory reaction and granulation tissue.

PH: Intimal Fibrosis

PAH: Plexiform Lesions

PH: Medial Hypertrophy

Pulmonary Venous Hypertension

Microscopic Features

- Thickened Pulmonary Vein (VVG Stain)
Pulmonary Venous Hypertension

Microscopic Features

Thickened Muscular Pulm Art (VVG Stain)

Normal Aortic Pressure and LV Coronary Flow

Pathophysiology: Hemodynamic Progression of PAH

Pre-symptomatic/Compensated

Symptomatic/ Decompensating

Declining/ Decompensated

Coronary Driving Pressure Gradient and the Effect of Pulmonary Hypertension

Right Ventricular Dysfunction in Pulmonary Hypertension

Right ventricular failure is a consequence of chronic ischemia on a hypertrophied pressure overloaded ventricle

Effects of pulmonary hypertension on RV myocardial perfusion

- Myocardial perfusion goes from being both systolic and diastolic to mostly diastolic.
- The RV hypertrophies, but coronary blood supply remains unchanged.
- RV work is dramatically increased without a compensatory increase in coronary blood flow.
- Tachycardia makes everything worse.
Fluorodeoxyglucose PET images of a patient with mild (A, mean pulmonary artery pressure, 33 mm Hg) and severe pulmonary hypertension (B, mean pulmonary artery pressure, 81 mm Hg)

Pulmonary Arterial Hypertension: Clinical Manifestations - Symptoms
- Dyspnea on Exertion/Rest
- Fatigue
- Chest Discomfort/Pain
- Cough
- Syncope/Presyncope
- Cerebral Vascular Accidents
- Seizures
- Hemoptysis
- Poor Appetite
- Nausea/Vomiting
- Edema
- Hoarseness
- Gout
- Heart Failure

PH: Progressive Right Heart Failure
- Hypotension
- RVEDP
- Reduced RV Coronary Blood Flow
- RV Ischemia
- Cardiac Output

PAH: Clinical Manifestations
- Dyspnea
 - Reduced O2 diffusion
 - Ventilation-perfusion mismatching
 - R-L shunting
 - Low O2 transport
- Angina
 - RV ischemia
 - Left main coronary compression
- Syncope
 - Hypotension due to systemic vasodilation and fixed pulmonary resistance
 - Arrhythmia
- Edema, hepatic congestion, ascites
 - RV failure
 - Tricuspid regurgitation

FDG PET images of a patient with pulmonary arterial hypertension before and after therapy

PAH: Findings on Physical Examination
- Tachypnea, cough, wheezing
- Jugular venous distention
- Right ventricular heave
- Right-sided fourth heart sound
- Loud pulmonic valve closure (P2)
- Tricuspid regurgitation murmur
- Pulmonary insufficiency murmur
- Hepatomegaly (pulsatile)
- Peripheral edema, ascites, pleural effusions
- Decreased peripheral perfusion
- Cyanosis
Pulmonary Venous PH: Symptoms

- Angina
- Syncope
- Congestive heart failure
- Dyspnea
- Hemoptysis
- Hoarseness
- Edema
- Ascites
- Paroxysmal nocturnal dyspnea
- Orthopnea
- Central and peripheral cyanosis

Pulmonary Venous PH: Findings on Physical Examination

- Tachypnea, cough, wheezing
- Basilar crackles
- Initial respiratory alkalosis, then combined acidosis (lactic acidosis)
- Central and peripheral cyanosis
- Specific signs Re: Left Heart or Venous Etiology
- Signs of PAH

Diagnosis of PH: Procedures

- Electrocardiogram
- Chest radiography
- Echocardiogram
- Ventilation perfusion scan (V/Q scan)
- Serologic studies, HIV
- Pulmonary function tests (PFT)
- Sleep study (if indicated)
- Arterial blood gases (ABG) (if indicated)
- Right-heart catheterization (with acute vasodilator testing if PAH)

PAH: Screening - ECG

PAH: Screening - CXR

PAH: Findings on the Echocardiogram

- TR (tricuspid regurgitation)
- RVE (right ventricular enlargement)
- RAE (right atrial enlargement)
- RVH (right ventricular hypertrophy)
- Flattening of IVS (interventricular septum)
- Dilated IVC/Hepatic veins
PAH: Echocardiogram

Echocardiogram

• $4V^2 = \text{Pressure Gradient (}\Delta P\text{)}$
 (Modified Bernoulli Equation)

• $\text{RVSP} - \text{RAP} = \Delta P$

• $\text{RVSP} = \text{RAP} + \Delta P$

PAH: RV, RA Enlargement on Echocardiogram

Echocardiogram

Doppler Estimation of RV Systolic Pressure

$2.5 V = 25 \text{ mmHg}$

$2.5 V = 34 \text{ mmHg}$

$4.5 V = 74 \text{ mmHg}$

$5.5 V = 121 \text{ mmHg}$
PH: Congestive Heart Failure - CXR
hilar fullness and haziness

Diagnosis of Pulmonary Hypertension

• High index of suspicion
• Thorough and complete evaluation

Diagnosis of PH: ECHO May Suggest an Underlying Etiology

• LV diastolic dysfunction
• MS or MR
• LV systolic dysfunction
• Congenital systemic to pulmonary shunt lesion (ASD, VSD, PDA, etc)

Pulmonary Hypertension Workup

Suspect Pulmonary Hypertension

TEE
?
CXR, ECG, TT Echo

PFTs, CPET, CVD w/u, Hematologic w/u, HIV, V/Q scan

Sleep Study
HRCT

?CT Angiogram
Pulm Angiogram

Right Heart Cath
Acute VD Study

?
Lung Biopsy

Transplantation Evaluation

Cardiac Catheterization

• To exclude congenital heart disease
• To measure wedge pressure or LVEDP
• To establish severity and prognosis
• Acute vasodilator drug testing

Cardiac catheterization should be performed in patients with suspected pulmonary hypertension

Pre-capillary PH: Classification

PAH

Idiopathic or Familial PAH Associated with (APAH)

• Connective tissue disease
• Congenital syst-pulm shunts
• Portal hypertension
• HIV infection
• Drugs and toxins
• Other

• High PA pressure and normal "downstream" pressures

• thyroid disorders
• glycogen storage disease
• Gaucher disease
• hereditary hemorrhagic telangiectasia
• hemoglobinopathies
• myeloproliferative disorders
• splenectomy
Treatment: Pre-capillary PH - Pulmonary Arterial Hypertension

- Early surgery to repair congenital systemic to pulmonary shunts, e.g. VSD, PDA

However, if no longer “operable” due to progressive pulmonary vascular obstructive disease
- Anticoagulation
- Vasodilator/Antiproliferative Therapy
- Lung or Heart-Lung Transplantation

Post-capillary PH: Localizing the Problem

- Venous Etiologies
 - Pulmonary Veins
 - stenosis
 - mediastinal fibrosis
 - neoplasm
 - pulmonary veno-occlusive disease

Post-capillary PH: Classification

- LH disease
- Left-sided atrial or ventricular heart disease
- Left-sided valvular heart disease

Post-capillary PH: Localizing the Problem

- Left Heart Etiologies
 - Aorta - cocrt, stenosis
 - LV - AS, AR, CM, constriction, myocardial disease, MS, MR, ischemic heart disease, congestive heart failure, diastolic dysfunction
 - LA - Ball-valve thrombus, myxoma, cor triatriatum

Treatment: Post-capillary PH - Pulmonary Venous Hypertension

- Surgery to eliminate obstruction
- Heart transplantation for left ventricular failure
- Treatment - Medical and/or Interventional
 - Specific Re: Left Heart or Venous Etiology
 - PAH treatment

Why Diagnose Pulmonary Arterial Hypertension?

Why Treat Pulmonary Arterial Hypertension?
Why Treat Pulmonary Arterial Hypertension?

Idiopathic PAH: PPH NIH Registry Data

- Median survival 2.8 years

NIH = National Institutes of Health

Pathobiology of Pulmonary Arterial Hypertension

- Genetic Predisposition
- Vascular Injury
- Endothelial Proliferation and Dysfunction
- Vasoconstrictor Imbalance
 - Deficient prostacyclin
 - Excess thromboxane
 - Excess endothelin
 - Deficient nitric oxide

Plexogenic and Thrombotic
Pulmonary Arteriopathy

In IPAH, Prostacyclin Synthase Expression in the Lung is Decreased

Tuder et al. AJRCCM 1999

Expression of Endothelin in the Lungs of Patients with IPAH

Plexiform Lesions in IPAH

Guil A et al. NEJM 1993

Pathobiology of Pulmonary Arterial Hypertension

- Genetic Predisposition
- Vascular Injury
- Endothelial Proliferation and Dysfunction
- Coagulation Abnormalities
 - Thrombosis in situ
- Vascular Smooth Muscle Hypertrophy
- Pulmonary Vasoconstriction
 - Plexogenic and Thrombotic
Pulmonary Arteriopathy

Vasodilator/Vasoconstrictor Imbalance

- Appetite suppressants
- Other exogenous toxins
- Hepatic toxins
- HIV
- Autoimmune Dysfunction
- Shear Stress
Nitric Oxide: Impact on Vascular Tone

- NO → Soluble guanylate cyclase
- Cyclic nucleotide phosphodiesterases
- GTP → cGMP → Inactive
- Vascular smooth muscle relaxation
- Decreased [Ca^{2+}]_i

GTP = guanosine triphosphate; GMP = guanosine monophosphate; cGMP = cyclic GMP

Endothelin System in Vascular Tissue

- ET-1 = endothelin 1
- Big-ET-1 = proendothelin 1
- ECE = endothelin-converting enzyme
- NO = nitric oxide
- PG12 = prostacyclin

Dupuis. Lancet 2001

In IPAH, Nitric Oxide Synthase Expression in the Lung is Decreased

Griep et al. NEJM 1999

Humbert M, Sitbon O, Simonneau G: NEJM 2004;351:1425
Mechanisms Behind Current Therapeutic Options

<table>
<thead>
<tr>
<th>Abnormality in PAH</th>
<th>Therapeutic Implication</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑ Prostacyclin synthase in endothelial cells</td>
<td>▶ Administer prostacyclin</td>
</tr>
<tr>
<td>↓ Nitric oxide synthase expression in</td>
<td>▶ Enhance NO pathway</td>
</tr>
<tr>
<td>endothelial cells</td>
<td></td>
</tr>
<tr>
<td>↑ Lung and circulating endothelin-1 levels</td>
<td>▶ Use endothelin receptor antagonist</td>
</tr>
</tbody>
</table>

Experience and Reason

“In Medicine one must pay attention not to plausible theorizing but to experience and reason together . . . I agree that theorizing is to be approved, provided that it is based on facts, and systematically makes its deductions from what is observed . . . But conclusions drawn from unaided reason can hardly be serviceable; only those drawn from observed fact.”

Hippocrates (460-377 BC): Precepts