Pulmonary Vascular Changes in Heart Disease

- Normal Circulatory Dynamics Physiology
- Pulmonary Hypertension

 Definition
 Classification
 Pathology
 Pathophysiology
 Clinical Manifestations
 Diagnosis
 Treatment

Pulmonary Circulation

- Low resistance, high compliance vascular bed
- Only organ to receive entire cardiac output (CO)
- Changes in CO as well as pleural/alveolar pressure affect pulmonary blood flow
- Different reactions compared to the systemic circulation
- Normally in a state of mild vasodilation

Exercise

- Pulmonary blood flow increases up to 4-5x BL
- Increased flow accommodated by both recruitment and vasodilation
- Net effect is a decrease in pulmonary vascular resistance (PVR)
- No further decrease in PVR once all vessels fully recruited and dilated

Physiology: Circulatory Hemodynamics Pressure* = Flow x Resistance

Systemic Circulation

- Pressure = Pressure drop across systemic circulation (mmHg) = Systemic Arterial Pressure (SAPm) - Systemic Venous Pressure (RAPm)
- Flow = Systemic Blood Flow[†] = Cardiac Index (CI; I/m/M²)
- Resistance = Systemic Vascular Resistance (SVR; units M²)

Pulmonary Circulation

- Pressure = Pressure drop across pulmonary circulation (mmHg) = Pulmonary Artery Pressure (PAPm) - Pulmonary Venous Pressure (PCWPm)
- Flow = Pulmonary Blood Flow[†] = Cardiac Index (CI; I/m/M²)
- Resistance = Pulmonary Vascular Resistance (PVR; units M²)

*pressure drop across vascular bed
† without congenital systemic to pulmonary shunts

Normal Pulmonary Hemodynamics at Sea Level (Rest and Mild Exercise) and at Elevated Altitude (Rest)			
	Sea level Rest	Sea level Mild Exercise	Altitude (~15,000 ft) Rest
Pulmonary arterial pressure, (mean) mmHg	20/10(15)	30/13(20)	38/14(26)
Cardiac output, L/min	6.0	12.0	6.0
Left atrial pressure (mean), mmHg	5.0	9.0	5.0

1.7

0.9

3.3

Pulmonary vascular

resistance, units

Pulmonary Hypertension: Definition

PAP mean ≥ 25 mm Hg at rest or ≥ 30 mmHg with exercise

Pre-capillary PH: Pulmonary Arterial Hypertension Definition

PAP mean ≥ 25 mmHg at rest or
 ≥ 30 mmHg with exercise

AND

- PCWP or LVEDP ≤ 15 mmHg
- PVRI ≥ 3 units m²
- Normal LVEF
- No left-sided valvular disease

Post-capillary PH: Definition

 PAP mean ≥ 25 mmHg at rest or ≥ 30 mmHg with exercise

AND

PCWP or LVEDP >15mmHg

Post-capillary PH: Localizing the Problem

- Left Heart Etiologies
 - -Aorta coarct, stenosis
 - -<u>LV</u> -AS, AR, CM, constriction, myocardial disease, MS, MR, ischemic heart disease, congestive heart failure, diastolic dysfunction
 - <u>LA</u> Ball-valve thrombus, myxoma, cor triatriatum

Post-capillary PH: Localizing the Problem

- Venous Etiologies
 - -Pulmonary Veins
 - -stenosis
 - -mediastinal fibrosis
 - -neoplasm
 - -pulmonary venoocclusive disease

Pulmonary Venous Hypertension Physiology

Pulmonary arterial → Lung → Pulmonary venous

35 mmHg → No obstruction → 25 mmHg

45-100 mmHg → Pulmonary arteriolar → 25 mmHg obstruction

Mixed (Pulmonary Venous and Pulmonary Arterial Hypertension): Definition

- PAP mean ≥25 mmHg at rest or ≥30 mmHg with exercise
- PCWP or LVEDP >15 mmHg
- PVRI ≥3 units M²
- Increased Transpulmonary Gradient Across Pulmonary Vascular Bed

Pathophysiology: Rest and Exercise Pulmonary Hemodynamics

$$P = F \times R$$
 $\frac{\Delta P}{F} = R$

	Rest	Exercise		
Normal	15mmHg-10mmHg = 1 unit•M ² 5 L/min/M ²	30mmHg-12mmHg = <1unit•M² 20 L/min/M²		
PAH (Pre-Cap)	50mmHg-10mmHg = 8 units•M ² 5 L/min/M ²	90mmHg-10mmHg = 10 units•M² 8 L/min/M²		
Pulm Venous PH (post-cap)	35mmHg-25mmHg = 2 units•M ² 5 L/min/M ²	55mmHg-35mmHg = 2 units•M ² 10 L/min/M ²		
Mixed PH (Pre-cap & Post-cap)	50mmHg-25mmHg = 5 units•M ² 5 L/min/M ²	75mmHg-35mmHg = 5 units•M² 8 L/min/M²		

Pathology: Pulmonary Vascular Disease Heath Edwards Classification

- **Grade 1 Medial hypertrophy in the small pulmonary arteries.**
- Grade 2 Concentric or eccentric cellular intimal proliferation and thickening within the smaller pulmonary arteries and arterioles.
- Grade 3 Relatively acellular intimal fibrosis with accumulation of concentric or eccentric masses of fibrous tissue leading to wide spread occlusion of the smaller pulmonary arteries and arterioles.
- Grade 4 Progressive, generalized dilatation of the muscular arteries and the appearance of plexiform lesions, complex vascular structures composed of a network or plexus of proliferating endothelial tissue, frequently accompanied by thrombus, within a dilated thin-walled sac.
- Grade 5 –Thinning and fibrosis of the media superimposed upon the formation of numerous complex dilatation lesions.
- Grade 6 Necrotizing arteritis within the media with surrounding areas of inflammatory reaction and granulation tissue.

Right Ventricular Dysfunction in Pulmonary Hypertension

Right ventricular failure is a consequence of chronic ischemia on a hypertrophied pressure overloaded ventricle

Effects of pulmonary hypertension on RV myocardial perfusion

- Myocardial perfusion goes from being both systolic and diastolic to mostly diastolic.
- The RV hypertrophies, but coronary blood supply remains unchanged.
- RV work is dramatically increased without a compensatory increase in coronary blood flow.
- Tachycardia makes everything worse.

Pulmonary Arterial Hypertension: Clinical Manifestations - Symptoms

- Dyspnea on Exertion/Rest
- Fatigue
- Chest Discomfort/Pain
- Cough
- Syncope/Presyncope
- Cerebral Vascular Accidents

- Seizures
- Hemoptysis
- Poor Appetite
- Nausea/Vomiting
- Edema
- Hoarseness
- Gout
- Heart Failure

PAH: Clinical Manifestations

- Dyspnea
 - Reduced O2 diffusion
 - Ventilationperfusion mismatching
 - R-L shunting
 - Low O2 transport
 Edema, hepatic
- Angina
 - RV ischemia
 - Left main coronary compression

- Syncope
 - Hypotension due to systemic vasodilation and fixed pulmonary resistance
 - Arrhythmia
- Edema, hepatic congestion, ascites
 - RV failure
 - Tricuspid regurgitation

PAH: Findings on Physical Examination

- Tachypnea, cough, wheezing
- Jugular venous distention
- Right ventricular heave
- Right-sided fourth heart sound
- Loud pulmonic valve closure (P₂)
- Tricuspid regurgitation murmur
- Pulmonary insufficiency murmur
- Hepatomegaly (pulsatile)
- Peripheral edema, ascites, pleural effusions
- Decreased peripheral perfusion
- Cyanosis

Pulmonary Venous PH: Symptoms

- Angina
- Syncope
- Congestive heart failure
- Dyspnea
- Hemoptysis
- Hoarseness
- Edema
- Ascites
- Paroxysmal nocturnal dyspnea
- Orthopnea
- Central and peripheral cyanosis

Pulmonary Venous PH: Findings on Physical Examination

- Tachypnea, cough, wheezing
- Basilar crackles
- Initial respiratory alkalosis, then combined acidosis (lactic acidosis)
- Central and peripheral cyanosis
- Specific signs Re: Left Heart or Venous Etiology
- Signs of PAH

Diagnosis of PH: Procedures

- Electrocardiogram
- Chest radiography
- Echocardiogram
- Ventilation perfusion scan (V/Q scan)
- Serologic studies, HIV
- Pulmonary function tests (PFT)
- Sleep study (if indicated)
- Arterial blood gases (ABG) (if indicated)
- Right-heart catheterization (with acute vasodilator testing if PAH)

PAH: Findings on the Echocardiogram

- TR (tricuspid regurgitation)
- RVE (right ventricular enlargement)
- RAE (right atrial enlargement)
- RVH (right ventricular hypertrophy)
- Flattening of IVS (interventricular septum)
- Dilated IVC/Hepatic veins

Diagnosis of PH: ECHO May Suggest an Underlying Etiology

- LV diastolic dysfunction
- MS or MR
- LV systolic dysfunction

Post-capillary pulmonary venous hypertension

 Congenital systemic to pulmonary shunt lesion (ASD, VSD, PDA, etc)

Cardiac Catheterization

- To exclude congenital heart disease
- To measure wedge pressure or LVEDP
- To establish severity and prognosis
- Acute vasodilator drug testing

Cardiac catheterization should be performed in patients with suspected pulmonary hypertension

Diagnosis of Pulmonary Hypertension

- High index of suspicion
- Thorough and complete evaluation

Treatment: Pre-capillary PH - Pulmonary Arterial Hypertension

 Early surgery to repair congenital systemic to pulmonary shunts, e.g. VSD, PDA

However, if no longer "operable" due to progressive pulmonary vascular obstructive disease

- Anticoagulation
- Vasodilator/Antiproliferative Therapy
- Lung or Heart-Lung Transplantation

Classification LH disease Left-sided atrial or ventricular heart disease Left-sided valvular heart disease

Post-capillary PH: Localizing the Problem

- Left Heart Etiologies
 - -Aorta coarct, stenosis
 - LV -AS, AR, CM, constriction, myocardial disease, MS, MR, ischemic heart disease, congestive heart failure, diastolic dysfunction
 - <u>LA</u> Ball-valve thrombus, myxoma, cor triatriatum

Post-capillary PH: Localizing the Problem

- Venous Etiologies
 - -Pulmonary Veins
 - -stenosis
 - -mediastinal fibrosis
 - -neoplasm
 - -pulmonary venoocclusive disease

Treatment: Post-capillary PH - Pulmonary Venous Hypertension

- Surgery to eliminate obstruction
- Heart transplantation for left ventricular failure
- Treatment Medical and/or Interventional
 - Specific Re: Left Heart or Venous Etiology
 - -PAH treatment

Why Diagnose Pulmonary Arterial Hypertension?

Why Treat Pulmonary Arterial Hypertension?

Pathobiology of Pulmonary Arterial Hypertension Genetic Predisposition Vascular Injury ~15% prevalence of Appetite suppressants positive family history Other exogenous toxins Autosomal dominant **Hepatic toxins** Co-ancestry in sporadic HIV cases **Autoimmune Dysfunction** PPH1 locus on **Shear Stress** chromosome 2q31-q32 BMPR2 mutations

Experience and Reason

"In Medicine one must pay attention not to plausible theorizing but to experience and reason together . . . I agree that theorizing is to be approved, provided that it is based on facts, and systematically makes its deductions from what is observed . . . But conclusions drawn from unaided reason can hardly be serviceable; only those drawn from observed fact."

Hippocrates (460-377 BC): Precepts