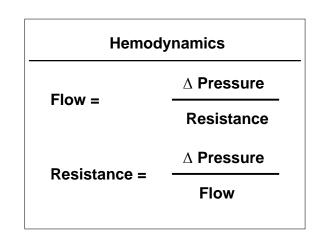
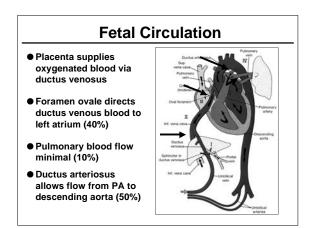
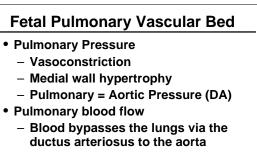
Pathophysiology: Left To Right Shunts

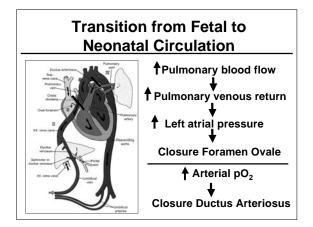

Daphne T. Hsu, MD <u>dh17@columbia.edu</u>


Learning Objectives

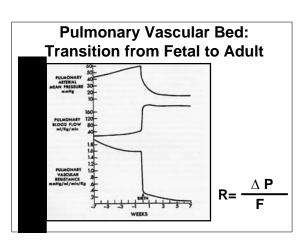

- Learn the relationships between pressure, blood flow, and resistance
- Review the transition from fetal to mature circulation
- Determine the effects of the transitional circulation on the physiology of left to right shunts
- Correlate clinical signs and symptoms with cardiac physiology

Pressure, Flow, Resistance

- Flow: Velocity of flow across vascular bed
- Resistance: Opposition to flow
 - Vessel diameter
 - Vessel structure and organization
 - Physical characteristics of blood



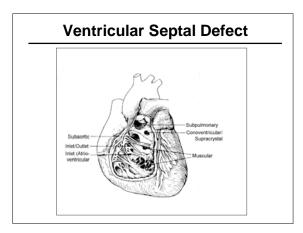
- Flow: Minimal
- Pulmonary resistance: High-Infinite
 - Resistance = Δ Pressure

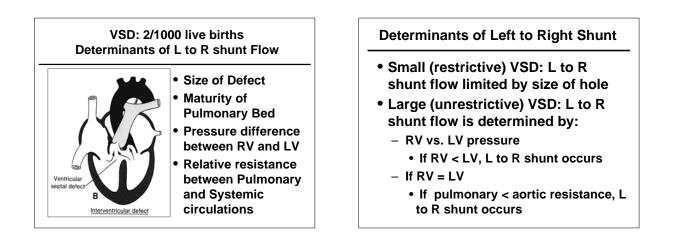

Flow

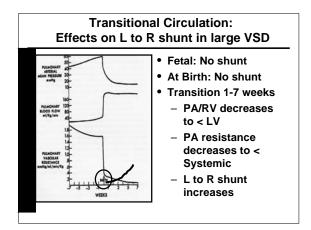
Regulation of Pulmonary Vascular Tone

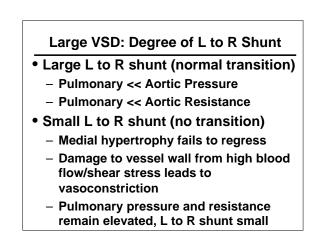
- Vascoconstriction
 - Hypoxia/acidosis
 - High blood flow and pressure
 - Failure of vessel maturation (no regression of medial hypertrophy)
- Vasodilation
 - Improved oxygenation
 - Prostaglandin inhibition
 - Thinning of vessel media
 - (regression of medial hypertrophy)

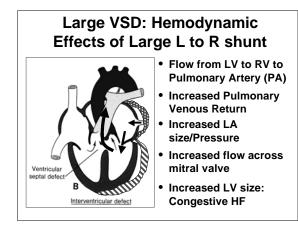
Adult Pulmonary Vascular Bed


- Pulmonary Artery Pressure: Low
 - Arterial Vasodilation
 - Medial wall hypertrophy regresses
 - Pulmonary << Aortic pressure
 - •15 mmHg vs. 60 mmHg
- Blood flow
 - Pulmonary = Aortic
- Resistance:
 - Pulmonary << Aortic Resistance

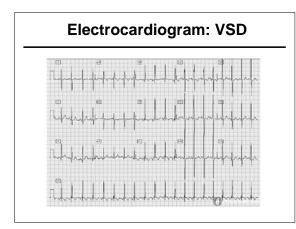

Left to Right Shunt Lesions

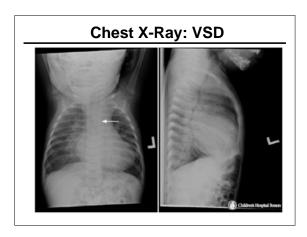

- Anatomic Communication: Pulmonary and Systemic circulations
- Blood flow occurs from the Systemic (Left) to the Pulmonary (Right) circulation

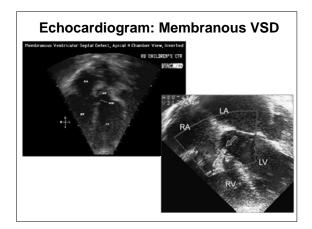

"Top 4" Left to Right Shunt Lesions

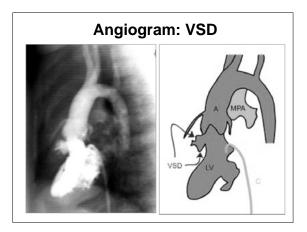

- Ventricular Septal Defect (VSD) – Left ventricle to Right ventricle
- Persistent Patent Ductus Arteriosus (PDA)
 - -Aorta to Pulmonary artery
- Endocardial Cushion Defect (ECD) – Left ventricle to Right ventricle – Left atrium to Right atrium
- Atrial Septal Defect (ASD)
- Left atrium to Right atrium

Natural History of Large VSD

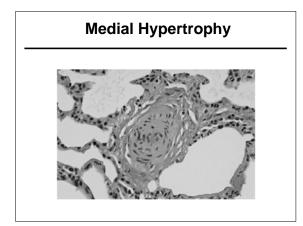

- Asymptomatic at birth: Pulmonary = Aortic Pressure and Resistance
- Signs of congestive heart failure as pulmonary pressure and resistance falls
 - Poor feeding
 - Failure to thrive (FTT) with preserved height and low weight
 - Tachypnea
 - Diaphoresis
 - Hepatomegaly
 - Increased respiratory illness


VSD: Clinical Findings


- Holosystolic murmur loudest LLSB radiating to apex and back
- Mid-Diastolic rumble: Increased flow across the mitral valve
- LV heave: LV dilation
- Precordial Thrill: turbulent blood flow across VSD
- Heart failure: Gallop rhythm (S3), Hepatomegaly, Rales
- Second heart sound: elevated PA pressure


Laboratory Findings: VSD

- EKG: LV dilatation ± RVH (if pulmonary artery pressure high)
- Chest x-ray: Large heart, **†** PVM
- Echo: Gold Standard
 - Location/Size of lesion
 - LA/LV size
 - Estimation RV pressure
- Catheterization: only in cases when high PVR suspected

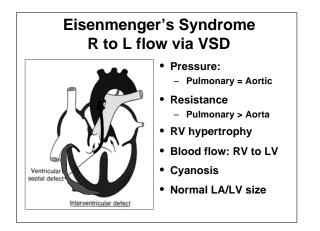


Treatment of Large VSD

- Medical: Anticongestive Therapy
 - Digoxin
 - Lasix
- Increased caloric intake
- VSD size decreases
 - Resolution of CHF without surgery (50%)
- Indications for VSD closure
 - Persistent CHF with failure to thrive or other symptoms
 - Increasing pulmonary vascular resistance
 - Within first two years of life

Eisenmenger's Syndrome

- Dr. Victor Eisenmenger, 1897
- Pathophysiology
 - Medial hypertrophy of pulmonary arteries
 - Perivascular necrosis
 - Replacement of normal vascular architecture
- High pulmonary vascular resistance
 - Right to left shunt via VSD
 - Severe cyanosis

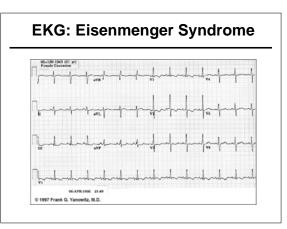


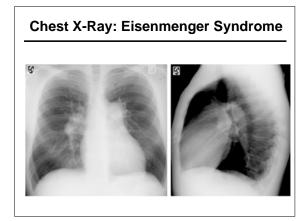
Effect of Large Left to Right Shunt on Pulmonary Vascular Bed

- High pulmonary blood flow: Shear Stress
 - Medial hypertrophy
 - Endothelial damage

$$\frac{\dagger \Delta \text{ Pressure}}{\dagger \text{ Resistance}} = \downarrow \text{ Blood Flow}$$

- Left to right blood shunt decreases
- Congestive heart failure improves



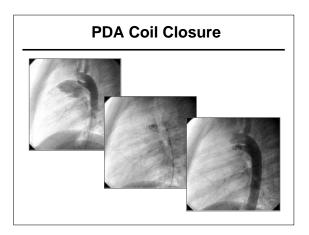

Clinical Picture: Eisenmenger's

- Rare disease in modern era
- Clinical improvement of heart failure in infancy due to decreased left to right shunt
- Clinical presentation: young adulthood
 - Exercise Intolerance
 - Cyanosis
 - Clubbing
 - No systolic murmur
- Elevated PA pressure/resistance
 - Second heart sound increased
 - RV heave (RV hypertension)
 - Pulmonary insufficiency murmur

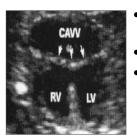
Lab findings: Eisenmenger's

- No LV volume overload
- High RV pressure overload
- EKG: RVH ± strain
- Echo: RV hypertrophy, right to left shunt at VSD
- Chest x-ray: Clear lung fields, prominent PA segment, small heart

Management


- Do NOT close VSD
 - No left to right shunt: No heart failure
 - Shunt is right to left through VSD
 - VSD must stay open to decompress high
- pressure RV and prevent RV failure
- Pulmonary vasodilators
 - Calcium channel blocker
- PGI2, Sidenafil
- Inotropic support
- Right heart failure
- Transplant
- Heart-Lung
- Lung transplant, heart repair

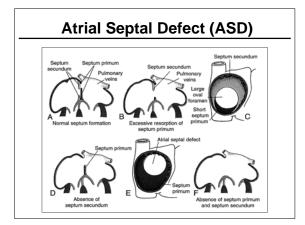
Patent Ductus Arteriosus (PDA)

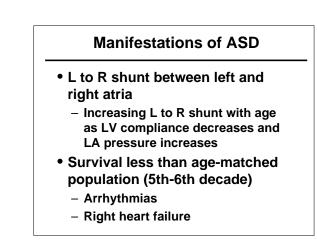

- Communication between Aorta and Pulmonary Artery
- L to R shunt depends on pulmonary artery pressure and resistance
- Continuous murmur (flow occurs in systole and diastole)
- Congestive heart failure

Management: PDA

- Indications for Closure – CHF/failure to thrive
 - Pulmonary hypertension
- Closure Methods
 - Surgical ligation
 - Transcatheter closure
 - Coil
 - Device

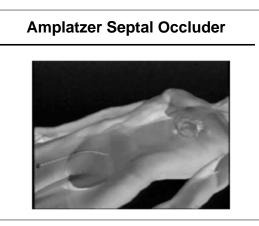
Endocardial Cushion Defect


- Atrial Septal Defect (Primum)
- VSD
- Common Atrioventricular Valve


Management: ECD

- Closure always indicated
- Timing of surgery (elective by 6 mos.)
 - Heart Failure
 - Large left to right shunt
 - Mitral insufficiency
 - Pulmonary hypertension
- Surgical repair
 - ASD, VSD closure
 - Repair of AV-Valves

Summary: VSD, PDA and ECD


- Asymptomatic in fetus and neonate
- Progressive increase in L to R shunt from 3-8 weeks of life as pulmonary pressure and vascular resistance decreases
- Indications for intervention
 - Congestive heart failure: FTT
 - Pulmonary vascular disease
- End stage: Eisenmenger's syndrome

Management ASD

- Indications for closure
 - RV volume overload
 - Pulmonary hypertension
 - Thrombo-embolism
- Closure method
 - Surgical
 - Device
 - Cardioseal
 - Amplatzer septal occluder

