Cardiovascular Pathophysiology: Left To Right Shunts
Ismee A. Williams, MD, MS
iib6@columbia.edu

Learning Objectives
• Learn the relationships between pressure, blood flow, and resistance
• Review the transition from fetal to mature circulation
• Correlate clinical signs and symptoms with cardiac physiology as it relates to left to right shunt lesions:
 – VSD, PDA, ASD
• Discuss Eisenmenger’s Syndrome

Pressure, Flow, Resistance
• Perfusion Pressure: Pressure gradient across vascular bed
 – Δ Mean Arterial - Venous pressure
• Flow: Volume of blood that travels across vascular bed
• Resistance: Opposition to flow
 – Vessel diameter
 – Vessel structure and organization
 – Physical characteristics of blood
Poiseuille equation

\[Q = \frac{\Delta P \pi r^4}{8nl} \]
\[R = \frac{8nl}{\pi r^4} \]

\(\Delta P \) = pressure drop
\(r \) = radius
\(R \) = resistance
\(n \) = viscosity
\(l \) = length of tube
\(Q \) = flow

Hemodynamics

Flow (Q) = \(\frac{\Delta \text{Pressure}}{\text{Resistance}} \)
Resistance = \(\frac{\Delta \text{Pressure}}{\text{Flow}} \)

Two parallel fetal circulations

- Placenta supplies oxygenated blood via ductus venosus
- Foramen ovale directs ductus venous blood to left atrium (40%)
- Pulmonary blood flow minimal (<10%)
- Ductus arteriosus allows flow from PA to descending aorta (40%)
Ductus Venosus and Streaming

- Ductus venosus diverts O_2 blood through liver to IVC and RA
 - Amount varies from 20-90%

- Streaming of blood in IVC
 - O_2 blood from the DV \rightarrow FO \rightarrow LA \rightarrow LV
 - De-O_2 blood from R hep, IVC \rightarrow TV \rightarrow RV

- SVC blood flows across TV \rightarrow RV
 - $<5\%$ SVC flow crosses FO

O_2 blood to high priority organs

- RV pumps De-O_2 blood to PA \rightarrow DA \rightarrow DescAo \rightarrow lower body and placenta

- LV pumps O_2 blood to AscAo \rightarrow coronary + cerebral circ

- Aortic isthmus connects the two separate vascular beds

Fetal Shunts Equalize Pressure

- RAp = LAp due to FO
- RVp = LVp due to DA

Unlike postnatal life unless a large communication persists...
RV is “work horse” of fetal heart

- RV pumps 66% CO
 - 59% goes to DA
 • (88% RV CO)
 - 7% goes to lungs
 • (12% RV CO)
- LV pumps 34% CO
 - 31% goes to AscAo
- Only 10% total CO crosses Ao isthmus

Transition from Fetal to Neonatal Circulation

- Lose placenta
 - ↑SVR
- Lungs expand mechanically
- ↑O₂ vasodilates pulm vasc bed
 - ↓PVR
- ↑PBF + ↑LA venous return
 - ↑LAp
- DV constricts
 - ↓RAP

Three Fetal Shunts Close

- LAP > RAP
 - FO closure
- ↑O₂ and ↓PGE₁
 - DA and DV constrict
- RV CO ↓
 - RV wall thickness ↓
- LV CO ↑
 - LV hypertrophies

RV CO = LV CO
Postnatal circulation in series
Regulation of Pulmonary Vascular Tone

- **Vasoconstriction**
 - Hypoxia/acidosis
 - High blood flow and pressure
 - Failure of vessel maturation (no regression of medial hypertrophy)
- **Vasodilation**
 - Improved oxygenation
 - Prostaglandin inhibition
 - Thinning of vessel media (regression of medial hypertrophy)

Fetal Pulmonary Vascular Bed

- Placenta is the organ of gas exchange
- Goal to bypass the fetal lungs
- **Pulmonary Pressure >> Ao Pressure**
 - Low O₂ tension causes Vasoconstriction
 - Medial wall hypertrophy
- **Pulmonary blood flow << Ao flow**
- **Pulmonary resistance >> Ao resistance**
 - Encourages shunting via DA to aorta

Neonatal Pulmonary Vascular Bed

- **Pulmonary Pressure ≈ Ao Pressure**
 - Arterial vasodilation
 - Medial wall hypertrophy persists
- **Pulmonary Blood flow = Aortic Flow**
 - Ductus arteriosus closes
 - Neonatal RV CO = LV CO
- **Pulmonary resistance ≈ Ao Resistance**
Adult Pulmonary Vascular Bed

- Pulmonary Pressure << Ao Pressure
 - 15 mmHg vs. 60 mmHg
 - Arterial Vasodilation
 - Medial wall hypertrophy regresses - remodeling

- Pulmonary Blood Flow = Aortic Flow

- Pulmonary Resistance << Ao Resistance
 - Resistance = $\frac{\Delta \text{Pressure}}{\text{Flow}}$

Pulmonary Vascular Bed: Transition from Fetal to Adult

Re-Cap: Fetal to Postnatal

- Fetus
 - Shunts exist
 - Lungs collapsed
 - RV CO > LV CO (Parallel circ)
 - Pulmonary pressure and resistance high

- Newborn
 - Shunts close
 - Lungs open
 - RV CO = LV CO (Series circ)
 - Pulmonary pressure and resistance drop
Left to Right Shunts

- Anatomic Communication between Pulmonary and Systemic circulations
- Excess blood flow occurs from the Systemic (Left) to the Pulmonary (Right) circulation

Qp:Qs

- Extra flow is represented by the ratio of pulmonary blood flow (Qp) to systemic blood flow (Qs)
- Qp:Qs = 1:1 if no shunts
- Qp:Qs >1 if left to right shunt
- Qp:Qs <1 if right to left shunt
- Qp:Qs of 2:1 means pulmonary blood flow is twice that of systemic blood flow

Why do we care?

- Already oxygenated pulmonary venous blood is recirculated through the lungs
- Excess PBF causes heart failure (CHF)
- Size of the shunt and the amount of PBF (Qp) determine how much CHF
- Shunt size determined by:
 - Location of communication
 - Size of communication
 - Age of the patient
 - Relative resistances to blood flow on either side of the communication
Pulmonary Effects of L to R Shunt

- ↑ PBF = ↑ extravascular lung fluid
 - transudation of fluid across capillaries faster than lymphatics can clear
- Altered lung mechanics
 - Tidal volume and lung compliance ↓
 - Expiratory airway resistance ↑
- Pulmonary edema results if Qp and Pulm Venous pressure very high
- Tachypnea

Neurohumoral Effects of L to R Shunt

- Sympathetic nervous system and renin-angiotensin system activation
 - plasma [NE] and [Epi] ↑
 - cardiac hormone B-type natriuretic peptide (BNP) ↑
- Tachycardia
- Diaphoresis

Metabolic Effects of L to R Shunt

- Acute and chronic malnutrition
- Mechanism not clear
 - ↑ metabolic expenditures (↑ O2 consumption) due to ↑ respiratory effort and myocardial work
 - ↓ nutritional intake
- Poor growth/ Failure to thrive
Pulmonary Hypertension: End Stage

- ↑ PBF causes sustained ↑ PAp
- Pulm vascular bed fails to remodel
 - Alveolar hypoxia may exacerbate
- Gradual effacement of the pulm arterioles
 - Overgrowth of vascular smooth muscle
 - Intimal proliferation
- Abnormal local vascular signaling
- Impaired endothelial function
- Pulm bed loses normal vasoreactivity
 - fixed pulmonary HTN and irreversible pulmonary vascular disease

Re-Cap

- Flow, Resistance, Pressure
- Fetal and Transitional Circulation
- Left to Right Shunts and CHF
- VSD
- PDA
- AVC
- ASD
- Eisenmenger

“Top 4” Left to Right Shunt Lesions

- Ventricular Septal Defect (VSD)
 - Left ventricle to Right ventricle
- Patent Ductus Arteriosus (PDA)
 - Aorta to Pulmonary artery
- Atrioventricular Canal Defect (AVC)
 - Left ventricle to Right ventricle
 - Left atrium to Right atrium
- Atrial Septal Defect (ASD)
 - Left atrium to Right atrium
VSD most common CHD (20%)

- 2/1000 live births
- Can occur anywhere in the IVS
- Location of VSD has no effect on shunt

- Perimembranous most common (75%)
- Muscular (15%) most likely to close
- Outlet (5%) most likely to involve valves
 - ↑ incidence in Asian pop (30%)
- Inlet (5%) assoc with AVC

Ventricular Septal Defect

VSD: Determinants of L to R shunt

- Size of VSD
- Difference in resistance between Pulmonary and Systemic circulations
- Difference in pressure between RV and LV
VSD: Determinants of L to R shunt

- Small (restrictive) VSD: L to R shunt flow limited by size of hole
- Large (unrestrictive) VSD: L to R shunt flow is determined by Pressure and Resistance
 - If RVp < LVp, L to R shunt occurs
 - If RVp = LVp, L to R shunt occurs if pulmonary < aortic resistance
- Shunt flow occurs in systole

Transitional Circulation: Effects on L to R shunt in large VSD

- Fetus: bidirectional shunt
- At Birth: No shunt
- Transition 1-7 wks
 - PA/RVp ↓ to < LVp
 - PA resistance ↓ to < Systemic
 - L to R shunt ↑

Large VSD: Hemodynamic Effects

- Flow LV→ RV→ PA
- ↑ Pulm Venous Return
- LA/LV volume overload
- ↑ LV SV initially by Starling mechanism
- ↑ LV dilation leads to systolic dysfxn & CHF
- ↑ Pulm circ leads to pulm vascular disease
VSD: Signs/Symptoms

• Asymptomatic at birth: PA = Ao Pressure and Resistance
• Signs of congestive heart failure as pulmonary pressure and resistance ↓
 – Poor feeding
 – Failure to thrive (FTT) with preserved height and low weight
 – Tachypnea
 – Diaphoresis
 – Hepatomegaly
 – Increased respiratory illness

VSD: Physical Exam

• Harsh Holosystolic murmur
 – Loudest LLSB radiating to apex and back
 – Smaller VSD = louder murmur
• Precordial Thrill 2° turbulence across VSD
• Mid-Diastolic rumble 2° ↑ trans-Mitral flow
• LV heave 2° LV dilation
• Signs of CHF
 – Gallop (S3), Hepatomegaly, Rales
• Signs of Pulm Vasc Disease
 – ↓murmur, RV heave, loud S2, cyanosis

VSD: Laboratory Findings

• CXR: Cardiomegally, ↑PVM
 – Pulm Vasc Dz: large PAs
• EKG: LAE, LVH
 – Pulm Vasc Dz: RVH
• ECHO: Location/Size VSD
 – Amount/direction of shunt
 – LA/LV size
 – Estimation RV pressure
• CATH: only if suspect ↑PVR
 – O2 step up in RV
VSD: Management

• Does the patient have symptoms?
 – size of the defect, RV/LV pressure, Pulm/Ao resistance
• Will the VSD close or ↓ in size?
• Is there potential for complications?
 – Valve damage, Pulm HTN
• Will the surgery be difficult? Will the surgery be successful?

VSD: Management

• Medical
 – Digoxin
 – Lasix
 – Increased caloric intake
 – 50% VSD size ↓ and CHF resolves
• Surgical
 – Persistent CHF
 – ↑ pulmonary vascular resistance
 – Valve damage
 – Within first two years of life
• Catheter
VSD: Endocarditis Prophylaxis
- Not for isolated VSD
- Yes for 1st 6 mo following repair of VSD with prosthetic material or device
- Yes for life if there is a residual defect at or adjacent to the site of a prosthetic device
- For dental and respiratory tract procedures ONLY
 - no longer for GI or GU procedures

Patent Ductus Arteriosus (PDA)
- Communication between Aorta and Pulmonary Artery
- 1/2500-5000 live births
- Risk factors: prematurity, rubella, high altitude

PDA: Determinants of L to R shunt
- Magnitude L to R shunt depends on
 - Length and diameter of ductus
 - Relative resistances of Ao and PA

- ↑ L to R shunt as Pulm resistance ↓
 - Volume overload of PA, LA, LV

- Shunt flow occurs in systole and diastole
PDA: Signs/Symptoms

- Small PDA: asymptomatic
- Large PDA: CHF
 - Diaphoresis
 - Tachypnea
 - Poor feeding
 - FTT
 - Hepatomegaly
 - Respiratory infections
- Moderate PDA: Fatigue, Dyspnea, palpitations in adol/adults
 - Afib 2º to LAE

PDA: Physical Exam

- Continuous machine-like murmur at left subclavian region
 - Ao>PA pressure in systole and diastole
- Congestive heart failure

PDA: Laboratory Studies

- CXR: cardiomegally, ↑ PVM
- EKG: LAE, LVH
- ECHO: measures size PDA, shunt and gradient, estimate PAp
- CATH: O2 step up in PA
PDA: Management

• Indications for Closure
 – CHF/failure to thrive
 – Pulmonary hypertension

• Closure Methods
 – Indomethacin if preemie
 – Surgical ligation
 – Transcatheter closure
 • Coil
 • Device

PDA Coil Closure

Atrioventricular Canal Defect/Endocardial Cushion Defect

• Atrial Septal Defect (Primum)
• Inlet VSD
• Common Atrioventricular Valve
AVC: Management

- Closure always indicated
- Timing of surgery (elective by 6 mos.)
 - Congestive Heart Failure
 - Large left to right shunt
 - Mitral insufficiency
 - Pulmonary hypertension
- Surgical repair
 - ASD, VSD closure
 - Repair of AV-Valves

Summary: VSD, PDA and AVC

- Asymptomatic in fetus and neonate
- Progressive ↑ in L to R shunt from 3-8 wks of life as pulmonary pressure and vascular resistance ↓
- Indications for intervention
 - Congestive heart failure: FTT
 - Pulmonary vascular disease
- End stage: Eisenmenger’s syndrome

Atrial Septum Formation

- Septum Primum grows downward
- Ostium Primum obliterates
- Fenestration in septum primum forms ostium secundum
- Septum secundum grows downward and fuses with endocardial cushions
 - Leaves oval-shaped opening Foramen ovale
- Superior edge of septum primum regresses
 - Lower edge becomes flap of FO
Atrial Septal Defect

- Persistent communication between RA and LA
- Common: 1/1500 live births
 - 7% of CHD
- Can occur anywhere in septum
- Physiologic consequences depend on:
 - Location
 - Size
 - Association with other anomalies

Atrial Septal Defect (ASD)

ASD Types

- **Ostium Secundum ASD (70%)**
 - 2:1 F>M
 - Familial recurrence 7-10%
 - Holt-Oram syndrome - upper limb defects
 - Region of FO
 - Defect in septum primum or secundum

- **Ostium Primum ASD**
 - Inferior portion of septum
 - Failure of fusion between septum primum and endocardial cushions
 - Cleft in MV or CAVC
ASD Types

- **Sinus Venosus ASD (10%)**
 - Incomplete absorption of sinus venosus into RA
 - IVC or SVC straddles atrial septum
 - Anomalous pulmonary venous drainage

- **Coronary Sinus ASD**
 - Unroofed coronary sinus
 - Wall between LA and coronary sinus missing
 - Persistent L-SVC

Patent Foramen Ovale

- **Prevalence 30% of population**

- **Failure of fusion of septum primum and secundum (flap of FO)**

- **Remains closed as long as LAp>RAp**
 - LAp<RAp
 - Pulmonary HTN / RV failure
 - Valsalva
 - Paradoxical embolism and STROKE

ASD: Manifestations

- **L to R shunt between LA and RA**
 - Amount of flow determined by:
 - Size of defect
 - Relative compliance of RV / LV
 - Shunt flow occurs only in diastole
 - L to R shunt ↑ with age
 - RV compliance ↑
 - LV compliance ↓

- **RA and RV volume overload**
ASD: Signs/Symptoms

- Infant/child usually asymptomatic
 - DOE, fatigue, lower respiratory tract infections
- Adults (prior age 40)
 - Palpitations (Atrial tach 2º RAE)
 - ↓ stamina (Right heart failure)
 - Survival less than age-matched controls (5th-6th decade)

ASD: Physical Exam

- Small for age
- Wide fixed split S2
- RV heave
- Systolic murmur LUSB
 - ↑ flow across PV
- Mid-Diastolic murmur LLSB
 - ↑ flow across TV

ASD: Laboratory Studies

- CXR: cardiomegally, ↑ PVM
- EKG: RAD, RVH, RAE, IRBBB
 - Primum ASD: LAD
- ECHO: RAE, RV dilation, ASD size, location, amount and direction of shunt
- CATH: O2 step up in RA
ASD: Management

- Indications for closure
 - RV volume overload
 - Pulmonary hypertension
 - Thrombo-embolism

- Closure method
 - Surgical
 - Catheter Delivered Device
 - Cardioseal
 - Amplatzer septal occluder

Eisenmenger’s Syndrome

- Dr. Victor Eisenmenger, 1897
- Severe pulmonary vascular obstruction 2º to chronic left to right shunts
- Pathophysiology
 - High pulmonary blood flow → Shear Stress
 - Medial hypertrophy + intimal proliferation leads to ↓ cross-sectional area of pulm bed
 - Perivascular necrosis and thrombosis
 - Replacement of normal vascular architecture
- Pulmonary vascular resistance increases
 - Right to left shunt
 - Severe cyanosis

Medial Hypertrophy
Eisenmenger’s Syndrome
R to L flow via VSD

- Pressure:
 - Pulmonary = Aortic
- Resistance
 - Pulmonary > Aorta
- RV hypertrophy
- Blood flow: RV to LV
- Cyanosis
- Normal LA/LV size

Eisenmenger’s: Signs/Symptoms

- Infancy:
 - CHF improves with ↓ left to right shunt
- Young adulthood:
 - Cyanosis/Hypoxia: DOE, exercise intolerance, fatigue, clubbing
 - Erythrocytosis/hyperviscosity: H/A, stroke
 - Hemoptysis 2º to infarction/rupture pulm vessels

Eisenmenger’s: Physical Exam

- Clubbing
- Jugular venous a-wave pulsations
 - ↑RV pressure during atrial contraction
- Loud S2
- RV heave (RV hypertension)
- Diastolic pulm insufficiency murmur
- No systolic murmur
Eisenmenger’s: Lab findings

- No LV volume overload / ↑ RV pressure
- CXR: Clear lung fields, prominent PA segment with distal pruning, small heart
- EKG: RAE, RVH ± strain
- ECHO: RV hypertrophy, right to left shunt at VSD, PDA, or ASD

EKG: Eisenmenger’s Syndrome

Eisenmenger’s Syndrome: CXR
Eisenmenger’s: Management

- Avoid exacerbating right to left shunt
 - No exercise, high altitude, periph vasodilators
 - Birth Control: 20-40% SAB, >45% mat mortality

- Medical Therapy:
 - Pulmonary vasodilators: Calcium channel blocker, PGI2, Sildenafil
 - Inotropic support for Right heart failure
 - Anticoagulation

- Transplant
 - Heart-Lung vs Lung transplant, heart repair

- Do NOT close Defect
 - VSD/PDA/ASD must stay open
 - Decompress high pressure RV, prevent RV failure and provide cardiac output

Learning Objectives

- Learn the relationships between pressure, blood flow, and resistance
- Review the transition from fetal to mature circulation
- Correlate clinical signs and symptoms with cardiac physiology as it relates to left to right shunt lesions:
 - VSD, PDA, ASD
- Discuss Eisenmenger’s Syndrome