Cardiovascular Pathophysiology: Left To Right Shunts Ismee A. Williams, MD, MS iib6@columbia.edu

Learning Objectives

- Learn the relationships between pressure, blood flow, and resistance
- Review the transition from fetal to mature circulation
- Correlate clinical signs and symptoms with cardiac physiology as it relates to left to right shunt lesions:
 VSD, PDA, ASD
- Discuss Eisenmenger's Syndrome

Pressure, Flow, Resistance

- Perfusion Pressure: Pressure gradient across vascular bed
 - Δ Mean Arterial Venous pressure
- Flow: Volume of blood that travels across vascular bed
- Resistance: Opposition to flow
 - Vessel diameter
 - Vessel structure and organization
 - Physical characteristics of blood

Ductus Venosus and Streaming

- Ductus venosus diverts O₂ blood through liver to IVC and RA

 Amount varies from 20-90%
- Streaming of blood in IVC
 - O_2 blood from the DV \rightarrow FO \rightarrow LA \rightarrow LV
 - − De-O₂ blood from R hep, IVC \rightarrow TV \rightarrow RV
- SVC blood flows across TV→RV
 <5% SVC flow crosses FO

O₂ blood to high priority organs

- RV pumps De-O₂ blood to PA→DA→ DescAo → lower body and placenta
- LV pumps O₂ blood to AscAo→ coronary + cerebral circ
- Aortic isthmus connects the two separate vascular beds

Fetal Shunts Equalize Pressure

- RAp = LAp due to FO
- RVp = LVp due to DA

Unlike postnatal life unless a large communication persists...

Transition from Fetal to Neonatal Circulation

- Lose placenta
 - ↑SVR
- Lungs expand mechanically
- [†]O₂ vasodilates pulm vasc bed

 ↓PVR
- DV constricts
 - ↓RAp

Regulation of Pulmonary Vascular Tone

- Vascoconstriction
 - Hypoxia/acidosis
 - High blood flow and pressure
 - Failure of vessel maturation (no regression of medial hypertrophy)
- Vasodilation
 - Improved oxygenation
 - Prostaglandin inhibition
 - Thinning of vessel media (regression of medial hypertrophy)

Fetal Pulmonary Vascular Bed

- Placenta is the organ of gas exchange
- Goal to bypass the fetal lungs
- Pulmonary Pressure >> Ao Pressure
 - Low O₂ tension causes Vasoconstriction
 Medial wall hypertrophy
- Pulmonary blood flow << Ao flowPulmonary resistance >> Ao resistance
 - Encourages shunting via DA to aorta

Neonatal Pulmonary Vascular Bed

- Pulmonary Pressure ≈ Ao Pressure
 - Arterial vasodilation
 - Medial wall hypertrophy persists
- Pulmonary Blood flow = Aortic Flow
 - Ductus arteriosus closes
 - Neonatal RV CO = LV CO
- Pulmonary resistance ≈ Ao Resistance

Adult Pulmonary Vascular Bed

- Pulmonary Pressure << Ao Pressure
 - 15 mmHg vs. 60 mmHg
 - Arterial Vasodilation
 - Medial wall hypertrophy regresses remodeling
- Pulmonary Blood Flow = Aortic Flow
- Pulmonary Resistance << Ao Resistance
 Resistance = <u>△ Pressure</u> Flow

Re-Cap: Fetal to Postnatal

• Fetus

- Shunts exist
- Lungs collapsed
- RV CO > LV CO (Parallel circ)
- Pulmonary pressure and resistance high
- Newborn
 - Shunts close
 - Lungs open
 - RV CO = LV CO (Series circ)
 - Pulmonary pressure and resistance drop

Left to Right Shunts

- Anatomic Communication between Pulmonary and Systemic circulations
- Excess blood flow occurs from the Systemic (Left) to the Pulmonary (Right) circulation

Qp:Qs

- Extra flow is represented by the ratio of pulmonary blood flow (Qp) to systemic blood flow (Qs)
- Qp:Qs = 1:1 if no shunts
- Qp:Qs >1 if left to right shunt
- Qp:Qs <1 if right to left shunt
- Qp:Qs of 2:1 means pulmonary blood flow is twice that of systemic blood flow

Why do we care?

- Already oxygenated pulmonary venous blood is recirculated through the lungs
- Excess PBF causes heart failure (CHF)
- Size of the shunt and ∴ the amount of PBF (Qp) determine how much CHF
- Shunt size determined by:
 - Location of communication
 - Size of communication
 - Age of the patient
 - Relative resistances to blood flow on either side of the communication

Pulmonary Effects of L to R Shunt

- ↑ PBF = ↑ extravascular lung fluid
 transudation of fluid across capillaries faster than lymphatics can clear
- Altered lung mechanics
 - Tidal volume and lung compliance ↓
 - Expiratory airway resistance †
- Pulmonary edema results if Qp and Pulm Venous pressure very high
- Tachypnea

Neurohumoral Effects of L to R Shunt

- Sympathetic nervous system and renin-angiotensin system activation

 plasma [NE] and [Epi] ↑
 - cardiac hormone B-type natriuretic peptide (BNP) ↑
- Tachycardia
- Diaphoresis

Metabolic Effects of L to R Shunt

- Acute and chronic malnutrition
- Mechanism not clear
 - ↑ metabolic expenditures (↑ O2 consumption) due to ↑ respiratory effort and myocardial work
 - ↓ nutritional intake
- Poor growth/ Failure to thrive

Pulmonary Hypertension: End Stage

- ↑ PBF causes sustained ↑ PAp
- Pulm vascular bed fails to remodel – Alveolar hypoxia may exacerbate
- Gradual effacement of the pulm arterioles
- Overgrowth of vascular smooth muscle
- Intimal proliferation
- Abnormal local vascular signaling
- Impaired endothelial function
- Pulm bed loses normal vasoreactivity
- fixed pulmonary HTN and irreversible pulmonary vascular disease

Re-Cap

- Flow, Resistance, Pressure
- Fetal and Transitional Circulation
- Left to Right Shunts and CHF
- VSD
- PDA
- AVC
- ASD
- Eisenmenger

"Top 4" Left to Right Shunt Lesions

- Ventricular Septal Defect (VSD) – Left ventricle to Right ventricle
- Patent Ductus Arteriosus (PDA) – Aorta to Pulmonary artery
- Atrioventricular Canal Defect (AVC)
 - -Left ventricle to Right ventricle
 - -Left atrium to Right atrium
- Atrial Septal Defect (ASD)
- Left atrium to Right atrium

VSD most common CHD (20%)

- 2/1000 live births
- Can occur anywhere in the IVS
- Location of VSD has no effect on shunt
- Perimembraneous most common (75%)
- Muscular (15%) most likely to close
- Outlet (5%) most likely to involve valves

 † incidence in Asian pop (30%)
- Inlet (5%) assoc with AVC

VSD: Determinants of L to R shunt

- Small (restrictive) VSD: L to R shunt flow limited by size of hole
- Large (unrestrictive) VSD: L to R shunt flow is determined by Pressure and Resistance
 - If RVp < LVp, L to R shunt occurs
 - If RVp = LVp, L to R shunt occurs if pulmonary < aortic resistance
- Shunt flow occurs in systole

VSD: Signs/Symptoms

- Asymptomatic at birth: PA = Ao Pressure and Resistance
- Signs of congestive heart failure as pulmonary pressure and resistance ↓
 - Poor feeding
 - Failure to thrive (FTT) with preserved height and low weight
 - Tachypnea
 - Diaphoresis
 - Hepatomegaly
 - Increased respiratory illness

VSD: Physical Exam

- Harsh Holosystolic murmur
 - loudest LLSB radiating to apex and back
 - Smaller VSD = louder murmur
- Precordial Thrill 2° turbulence across VSD
- Mid-Diastolic rumble 2° ↑ trans-Mitral flow
- LV heave 2° LV dilation
- Signs of CHF
 - Gallop (S3), Hepatomegaly, Rales
- Signs of Pulm Vasc Disease
 - ↓murmur, RV heave, loud S2, cyanosis

VSD: Laboratory Findings

- CXR: Cardiomegally, †PVM – Pulm Vasc Dz: large PAs
- EKG: LAE, LVH
 - Pulm Vasc Dz: RVH
- ECHO: Location/Size VSD
- Amount/direction of shunt
- LA/LV size
- Estimation RV pressure
 CATH: only if suspect \PVR
 - O2 step up in RV

VSD: Management

- Does the patient have symptoms? - size of the defect, RV/LV pressure, Pulm/Ao resistance
- Will the VSD close or ↓in size?
- Is there potential for complications? – Valve damage, Pulm HTN
- Will the surgery be difficult? Will the surgery be successful?

VSD: Management

- Medical
 - Digoxin
 - Lasix
 - Increased caloric intake
 - 50% VSD size \downarrow and CHF resolves
- Surgical
 - Persistent CHF
 - $-\uparrow$ pulmonary vascular resistance
 - Valve damage
 - Within first two years of life
- Catheter

VSD: Endocarditis Prophylaxis

- Not for isolated VSD
- Yes for 1st 6 mo following repair of VSD with prosthetic material or device
- Yes for life if there is a residual defect at or adjacent to the site of a prosthetic device
- For dental and respiratory tract procedures ONLY
 - no longer for GI or GU procedures

Patent Ductus Arteriosus (PDA)

- Communication between Aorta and Pulmonary Artery
- 1/2500-5000 live births
- Risk factors: prematurity, rubella, high altitude

PDA: Determinants of L to R shunt

- Magnitude L to R shunt depends on
 - Length and diameter of ductus
 - Relative resistances of Ao and PA
- ↑ L to R shunt as Pulm resistance ↓
 Volume overload of PA, LA, LV
- Shunt flow occurs in systole and diastole

PDA: Signs/Symptoms

- Small PDA: asymptomatic
- Large PDA: CHF
 - Diaphoresis
 - Tachypnea
 - Poor feeding
 - FTT
 - Hepatomegaly
 - Respiratory infections
- Moderate PDA: Fatigue, Dyspnea, palpitations in adol/adults
 - Afib 2° to LAE

PDA: Physical Exam

- Continuous machine-like murmur at left subclavian region
 - Ao>PA pressure in systole and diastole
- Congestive heart failure

PDA: Laboratory Studies

- CXR: cardiomegally, † PVM
- EKG: LAE, LVH
- ECHO: measures size PDA, shunt and gradient, estimate PAp
- CATH: O2 step up in PA

PDA: Management

- Indications for Closure
 - CHF/failure to thrive
 - Pulmonary hypertension

• Closure Methods

- Indomethacin if preemie
- Surgical ligation
- Transcatheter closure
 - Coil • Device
- **PDA Coil Closure**

Atrioventricular Canal Defect/ Endocardial Cushion Defect

- Atrial Septal Defect (Primum)
- Inlet VSD
- Common Atrioventricular Valve

AVC: Management

- Closure always indicated
- Timing of surgery (elective by 6 mos.)
 - Congestive Heart Failure
 Large left to right shunt
 - Mitral insufficiency
 - Pulmonary hypertension
- Surgical repair
 - ASD, VSD closure
 - Repair of AV-Valves

Summary: VSD, PDA and AVC

• Asymptomatic in fetus and neonate

- Progressive ↑ in L to R shunt from 3-8 wks of life as pulmonary pressure and vascular resistance ↓
- Indications for intervention

 Congestive heart failure: FTT
 Pulmonary vascular disease
- End stage: Eisenmenger's syndrome

Atrial Septum Formation

- Septum Primum grows downward
- Ostium Primum obliterates
- Fenestration in septum primum forms ostium secundum
- Septum secundum grows downward and fuses with endocardial cushions
 - Leaves oval-shaped opening Foramen ovale
- Superior edge of septum primum regresses
 - Lower edge becomes flap of FO

Atrial Septal Defect

- Persistent communication between RA and LA
- Common: 1/1500 live births - 7% of CHD
- Can occur anywhere in septum
- Physiologic consequences depend on:
 - Location
 - Size
 - Association with other anomalies

ASD Types

- Ostium Secundum ASD (70%)
 - 2:1 F>M
 - Familial recurrence 7-10%
 - Holt-Oram syndrome upper limb defects – Region of FO
 - Defect in septum primum or secundum
- Ostium Primum ASD
 - Inferior portion of septum
 - Failure of fusion between septum primum
 - and endocardial cushions
 - Cleft in MV or CAVC

ASD Types

- Sinus Venosus ASD (10%)
 - Incomplete absorption of sinus venosus into RA
 - IVC or SVC straddles atrial septum
 - Anomalous pulmonary venous drainage

• Coronary Sinus ASD

- Unroofed coronary sinus
- Wall between LA and coronary sinus missing
- Persistent L-SVC

Patent Foramen Ovale

- Prevalence 30% of population
- Failure of fusion of septum primum and secundum (flap of FO)
- Remains closed as long as LAp>RAp
 - LAp<RAp
 - Pulmonary HTN / RV failure
 - Valsalva
 - Paradoxical embolism and STROKE

ASD: Manifestations

- L to R shunt between LA and RA
 - Amount of flow determined by:
 - Size of defect
 - Relative compliance of RV / LV
 - Shunt flow occurs only in diastole
 - L to R shunt † with age
 - RV compliance †
 - LV compliance ↓
- RA and RV volume overload

ASD: Signs/Symptoms

- Infant/child usually asymptomatic

 DOE, fatigue, lower respiratory tract infections
- Adults (prior age 40)
 - Palpitations (Atrial tach 2º RAE)
 - ↓ stamina (Right heart failure)
 - Survival less than age-matched controls (5th-6th decade)

ASD: Physical Exam

- Small for age
- Wide fixed split S2
- RV heave
- Systolic murmur LUSB - ↑ flow across PV
- Mid-Diastolic murmur LLSB – ↑ flow across TV

ASD: Laboratory Studies

- CXR: cardiomegally, † PVM
- EKG: RAD, RVH, RAE, IRBBB – Primum ASD: LAD
- ECHO: RAE, RV dilation, ASD size, location, amount and direction of shunt
- CATH: O2 step up in RA

ASD: Management

- Indications for closure
 - RV volume overload
 - Pulmonary hypertension
 - Thrombo-embolism
- Closure method
 - Surgical
 - Catheter Delivered Device
 - Cardioseal
 - Amplatzer septal occluder

Eisenmenger's Syndrome

- Dr. Victor Eisenmenger, 1897
- Severe pulmonary vascular obstruction 2° to chronic left to right shunts
- Pathophysiology

 - Medial hypertrophy + intimal proliferation leads to ↓cross-sectional area of pulm bed
 - Perivascular necrosis and thrombosis
 - Replacement of normal vascular architecture
- Pulmonary vascular resistance increases
- Right to left shunt
 - Severe cyanosis

Eisenmenger's: Signs/Symptoms

• Infancy:

- CHF improves with \$\\$ left to right shunt
- Young adulthood:
 - Cyanosis/Hypoxia: DOE, exercise intolerance, fatigue, clubbing
 - Erythrocytosis/hyperviscosity: H/A, stroke
 - Hemoptysis 2° to infarction/rupture pulm vessels

Eisenmenger's: Physical Exam

- Clubbing
- Jugular venous a-wave pulsations

 [†]RV pressure during atrial contraction
- Loud S2
- RV heave (RV hypertension)
- Diastolic pulm insufficiency murmur
- No systolic murmur

Eisenmenger's: Lab findings

- No LV volume overload / † RV pressure
- CXR: Clear lung fields, prominent PA segment with distal pruning, small heart
- EKG: RAE, RVH ± strain
- ECHO: RV hypertrophy, right to left shunt at VSD, PDA, or ASD

Eisenmenger's: Management

- Avoid exacerbating right to left shunt
 - No exercise, high altitude, periph vasodilators
 Birth Control: 20-40% SAB, >45% mat mortality
- Birth Control: 20-40% SAB, >45% ma
 Medical Therapy:
 - Pulmonary vasodilators: Calcium channel blocker, PGI2, Sidenafil
 - Inotropic support for Right heart failure
 - Anticoagulation
- Transplant
 - Heart-Lung vs Lung transplant, heart repair
- Do NOT close Defect
 - VSD/PDA/ASD must stay open
 - Decompress high pressure RV, prevent RV failure and provide cardiac output

Learning Objectives

- Learn the relationships between pressure, blood flow, and resistance
- Review the transition from fetal to mature circulation
- Correlate clinical signs and symptoms with cardiac physiology as it relates to left to right shunt lesions:
 - VSD, PDA, ASD
- Discuss Eisenmenger's Syndrome