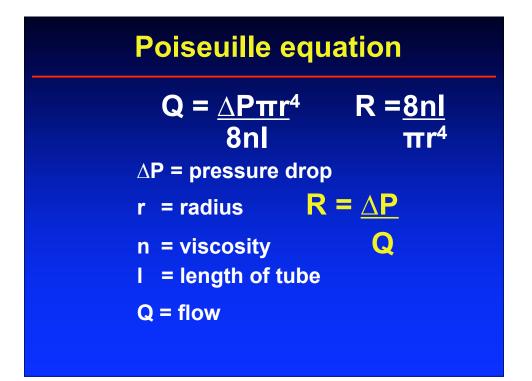
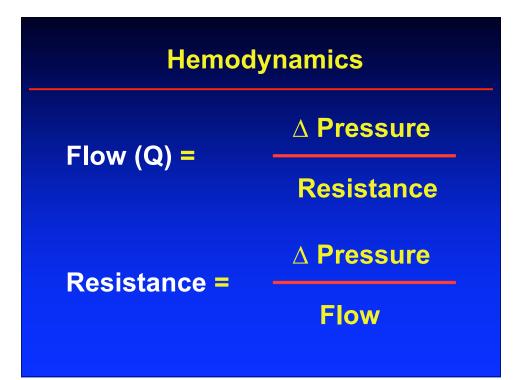
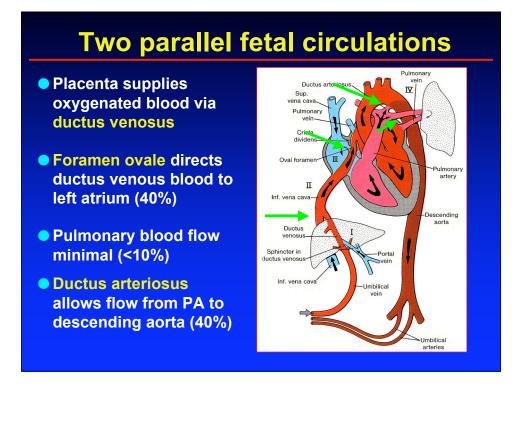
Cardiovascular Pathophysiology: Left To Right Shunts Ismee A. Williams, MD, MS


iib6@columbia.edu

Learning Objectives


- Learn the relationships between pressure, blood flow, and resistance
- Review the transition from fetal to mature circulation
- Correlate clinical signs and symptoms with cardiac physiology as it relates to left to right shunt lesions:
 VSD, PDA, ASD


Discuss Eisenmenger's Syndrome

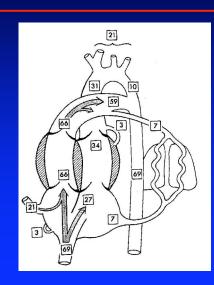

Pressure, Flow, Resistance

- Vessel structure and organization
- Physical characteristics of blood

Ductus Venosus and Streaming

- Ductus venosus diverts O₂ blood through liver to IVC and RA
 - Amount varies from 20-90%
- Streaming of blood in IVC
 - O_2 blood from the DV \rightarrow FO \rightarrow LA \rightarrow LV
 - De-O₂ blood from R hep, IVC \rightarrow TV \rightarrow RV
- SVC blood flows across TV→RV
 - <5% SVC flow crosses FO</p>

O₂ blood to high priority organs


- RV pumps De-O₂ blood to PA→DA→
 DescAo → lower body and placenta
- LV pumps O₂ blood to AscAo→ coronary + cerebral circ
- Aortic isthmus connects the two separate vascular beds

Fetal Shunts Equalize Pressure

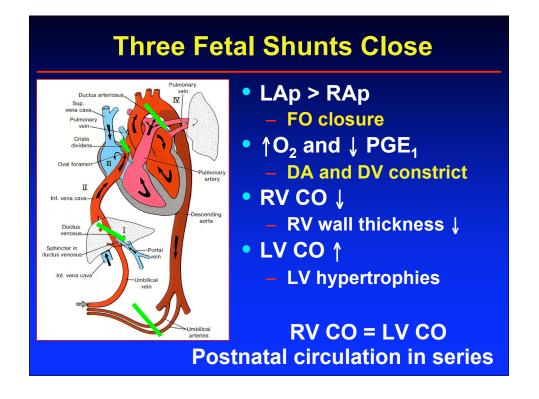
- RAp = LAp due to FO
- RVp = LVp due to DA

Unlike postnatal life unless a large communication persists...

RV is "work horse" of fetal heart

- RV pumps 66% CO
 59% goes to DA
 - (88% RV CO)
 - 7% goes to lungs
 (12% RV CO)
- LV pumps 34% CO

 31% goes to AscAo

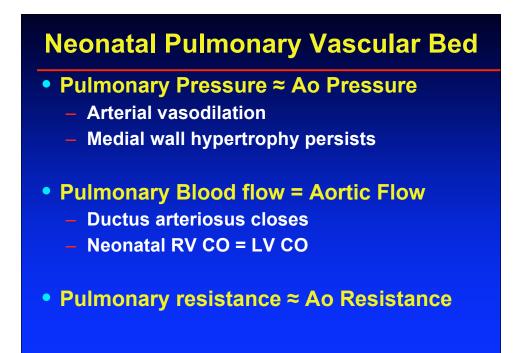

 Only 10% total CO
- crosses Ao isthmus

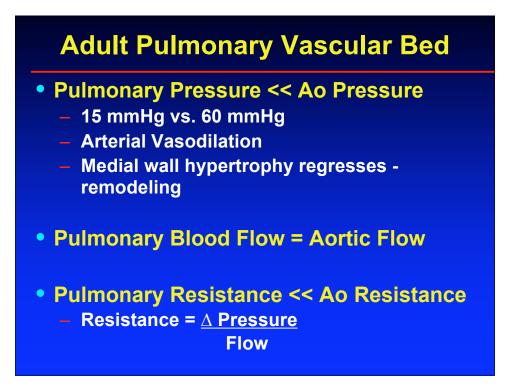
Transition from Fetal to Neonatal Circulation

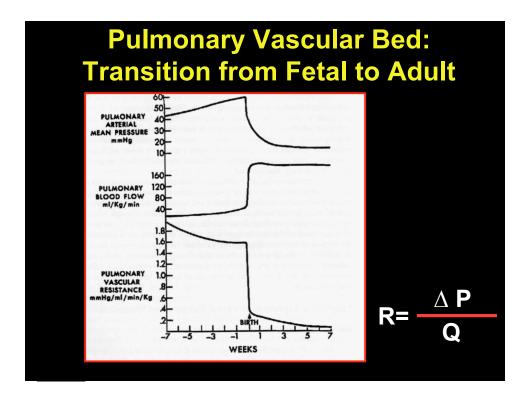
- Lungs expand mechanically
- [†]O₂ vasodilates pulm vasc bed

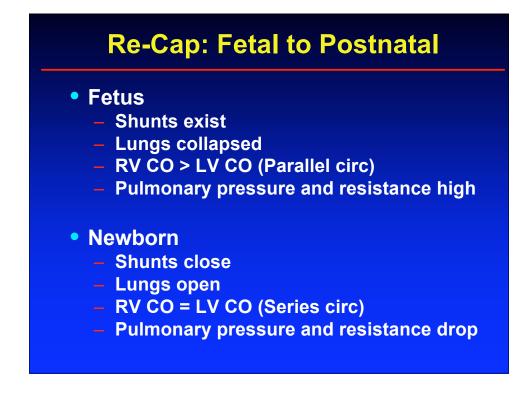
 [↓]PVR
- ↑ PBF + ↑LA venous return
 ↑LAp
- DV constricts

– ↓RAp




Regulation of Pulmonary Vascular Tone


- Vascoconstriction
 - Hypoxia/acidosis
 - High blood flow and pressure
 - Failure of vessel maturation (no regression of medial hypertrophy)
- Vasodilation
 - Improved oxygenation
 - Prostaglandin inhibition
 - Thinning of vessel media
 - (regression of medial hypertrophy)


Fetal Pulmonary Vascular Bed

- Placenta is the organ of gas exchange
- Goal to bypass the fetal lungs
- Pulmonary Pressure >> Ao Pressure
 - Low O₂ tension causes Vasoconstriction
 - Medial wall hypertrophy
- Pulmonary blood flow << Ao flow
- Pulmonary resistance >> Ao resistance
 - Encourages shunting via DA to aorta

Left to Right Shunts

- Anatomic Communication between Pulmonary and Systemic circulations
- Excess blood flow occurs from the Systemic (Left) to the Pulmonary (Right) circulation

Qp:Qs

- Extra flow is represented by the ratio of pulmonary blood flow (Qp) to systemic blood flow (Qs)
- Qp:Qs = 1:1 if no shunts
- Qp:Qs >1 if left to right shunt
- Qp:Qs <1 if right to left shunt</p>
- Qp:Qs of 2:1 means pulmonary blood flow is twice that of systemic blood flow

Why do we care?

- Already oxygenated pulmonary venous blood is *recirculated* through the lungs
- Excess PBF causes heart failure (CHF)
- Size of the shunt and ∴ the amount of PBF (Qp) determine how much CHF
- Shunt size determined by:
 - Location of communication
 - Size of communication
 - Age of the patient
 - Relative resistances to blood flow on either side of the communication

Pulmonary Effects of L to R Shunt

- ↑ PBF =
 ↑ extravascular lung fluid
 - transudation of fluid across capillaries faster than lymphatics can clear
- Altered lung mechanics
 - Tidal volume and lung compliance ↓
 - Expiratory airway resistance ↑
- Pulmonary edema results if Qp and Pulm Venous pressure very high
- Tachypnea

Neurohumoral Effects of L to R Shunt

- Sympathetic nervous system and renin-angiotensin system activation
 - plasma [NE] and [Epi] ↑
 - cardiac hormone B-type natriuretic peptide (BNP) ↑
- Tachycardia
- Diaphoresis

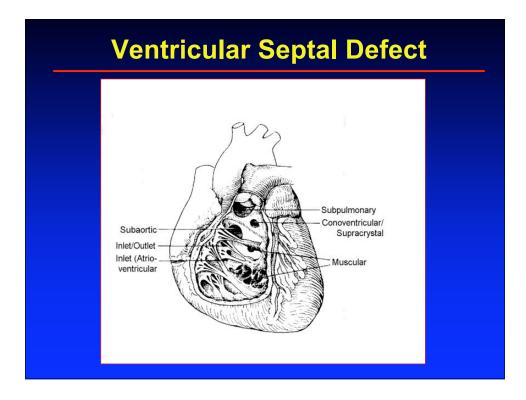
Metabolic Effects of L to R Shunt

- Acute and chronic malnutrition
- Mechanism not clear
 - ↑ metabolic expenditures (↑ O2 consumption) due to ↑ respiratory effort and myocardial work
 - ↓ nutritional intake
- Poor growth/ Failure to thrive

Pulmonary Hypertension: End Stage

- ↑ PBF causes sustained
 ↑ PAp
- Pulm vascular bed fails to remodel
 Alveolar hypoxia may exacerbate
- Gradual effacement of the pulm arterioles
 - Overgrowth of vascular smooth muscle
 - Intimal proliferation
- Abnormal local vascular signaling
- Impaired endothelial function
- Pulm bed loses normal vasoreactivity
 fixed pulmonary HTN and irreversible pulmonary vascular disease

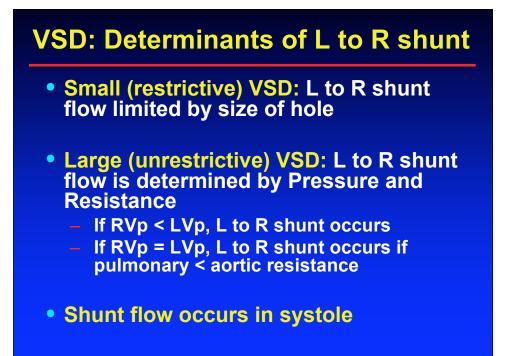
Re-Cap

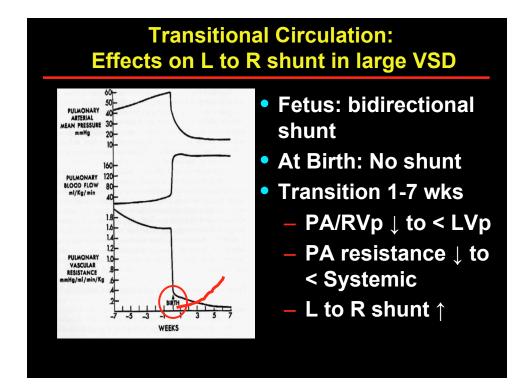

- Flow, Resistance, Pressure
- Fetal and Transitional Circulation
- Left to Right Shunts and CHF
- VSD
- PDA
- AVC
- ASD
- Eisenmenger

"Top 4" Left to Right Shunt Lesions

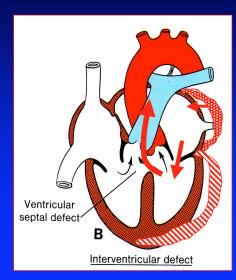
- Ventricular Septal Defect (VSD)

 Left ventricle to Right ventricle
- Patent Ductus Arteriosus (PDA)
 Aorta to Pulmonary artery
- Atrioventricular Canal Defect (AVC)
 - Left ventricle to Right ventricle
 - -Left atrium to Right atrium
- Atrial Septal Defect (ASD)
 Left atrium to Right atrium
- VSD most common CHD (20%)
 - 2/1000 live births
 - Can occur anywhere in the IVS
 - Location of VSD has no effect on shunt
 - Perimembraneous most common (75%)
 - Muscular (15%) most likely to close
 - Outlet (5%) most likely to involve valves


 ↑ incidence in Asian pop (30%)
 - Inlet (5%) assoc with AVC



VSD: Determinants of L to R shunt



- Size of VSD
- Difference in resistance between Pulmonary and Systemic circulations
- Difference in pressure between RV and LV

Large VSD: Hemodynamic Effects

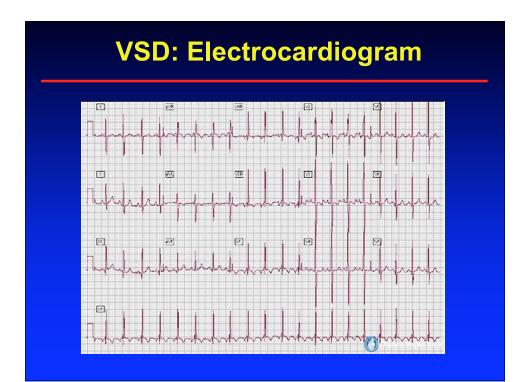
- Flow LV \rightarrow RV \rightarrow PA
- ↑ Pulm Venous Return
- LA/LV volume overload

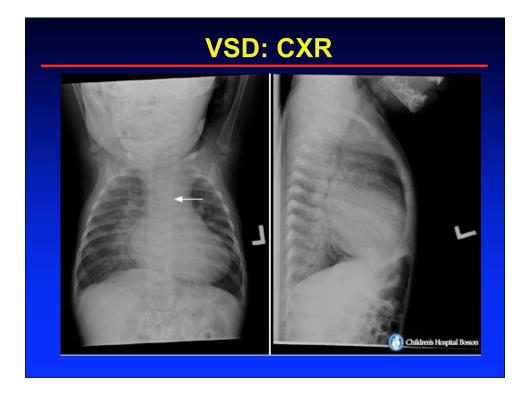
 ↑ LV SV initially by Starling mechanism

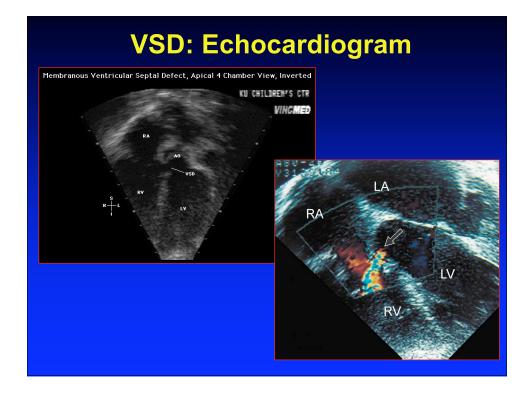
- LV dilation leads to systolic dysfxn & CHF
- ↑ Pulm circ leads to pulm vascular disease

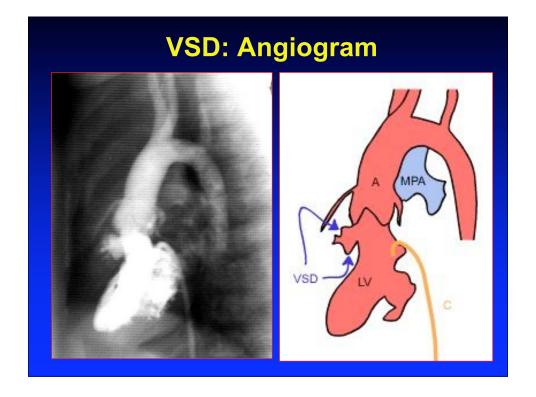
VSD: Signs/Symptoms

- Asymptomatic at birth: PA = Ao Pressure and Resistance
- Signs of congestive heart failure as pulmonary pressure and resistance ↓
 - Poor feeding
 - Failure to thrive (FTT) with preserved height and low weight
 - Tachypnea
 - Diaphoresis
 - Hepatomegaly
 - Increased respiratory illness


VSD: Physical Exam


- Harsh Holosystolic murmur
 - loudest LLSB radiating to apex and back
 - Smaller VSD = louder murmur
- Precordial Thrill 2° turbulence across VSD
- Mid-Diastolic rumble 2° ↑ trans-Mitral flow
- LV heave 2° LV dilation
- Signs of CHF
 Gallop (S3), Hepatomegaly, Rales
- Signs of Pulm Vasc Disease


 ↓murmur, RV heave, loud S2, cyanosis


VSD: Laboratory Findings

- CXR: Cardiomegally, ↑PVM
 - Pulm Vasc Dz: large PAs
- EKG: LAE, LVH
 - Pulm Vasc Dz: RVH
- ECHO: Location/Size VSD
 - Amount/direction of shunt
 - LA/LV size
 - Estimation RV pressure
- - O2 step up in RV

VSD: Management

- Does the patient have symptoms?
 - size of the defect, RV/LV pressure, Pulm/Ao resistance
- Will the VSD close or ↓ in size?
- Is there potential for complications?
 Valve damage, Pulm HTN
- Will the surgery be difficult? Will the surgery be successful?

VSD: Management

- Medical
 - Digoxin
 - Lasix
 - Increased caloric intake
 - 50% VSD size ↓ and CHF resolves
- Surgical
 - Persistent CHF
 - ↑ pulmonary vascular resistance
 - Valve damage
 - Within first two years of life
- Catheter

VSD: Endocarditis Prophylaxis

- Not for isolated VSD
- Yes for 1st 6 mo following repair of VSD with prosthetic material or device
- Yes for life if there is a residual defect at or adjacent to the site of a prosthetic device
- For dental and respiratory tract procedures ONLY
 - no longer for GI or GU procedures

Patent Ductus Arteriosus (PDA)

- Communication between Aorta and Pulmonary Artery
- 1/2500-5000 live births
- Risk factors: prematurity, rubella, high altitude

PDA: Determinants of L to R shunt

- Magnitude L to R shunt depends on
 - Length and diameter of ductus
 - Relative resistances of Ao and PA
- ↑ L to R shunt as Pulm resistance ↓
 Volume overload of PA, LA, LV
- Shunt flow occurs in systole and diastole

PDA: Signs/Symptoms

- Small PDA: asymptomatic
- Large PDA: CHF
 - Diaphoresis
 - Tachypnea
 - Poor feeding
 - FTT
 - Hepatomegaly
 - Respiratory infections
- Moderate PDA: Fatigue, Dyspnea, palpitations in adol/adults
 - Afib 2° to LAE

PDA: Physical Exam

 Continuous machine-like murmur at left subclavian region

 Ao>PA pressure in systole and diastole

Congestive heart failure

PDA: Laboratory Studies

- CXR: cardiomegally, ↑ PVM
- EKG: LAE, LVH
- ECHO: measures size PDA, shunt and gradient, estimate PAp
- CATH: O2 step up in PA

PDA: Management

Indications for Closure

- CHF/failure to thrive
- Pulmonary hypertension

Closure Methods

- Indomethacin if preemie
- Surgical ligation
- Transcatheter closure
 - Coil
 - Device

<section-header>

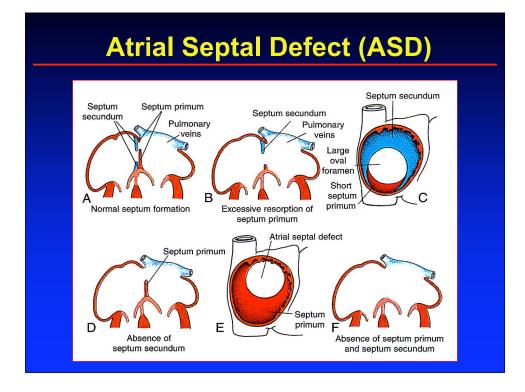
Atrioventricular Canal Defect/ Endocardial Cushion Defect

- Atrial Septal Defect (Primum)
- Inlet VSD
- Common Atrioventricular Valve

AVC: Management

- Closure always indicated
- Timing of surgery (elective by 6 mos.)
 - Congestive Heart Failure
 - Large left to right shunt
 - Mitral insufficiency
 - Pulmonary hypertension
- Surgical repair
 - ASD, VSD closure
 - Repair of AV-Valves

Summary: VSD, PDA and AVC


- Asymptomatic in fetus and neonate
- Progressive ↑ in L to R shunt from 3-8 wks of life as pulmonary pressure and vascular resistance ↓
- Indications for intervention
 - Congestive heart failure: FTT
 - Pulmonary vascular disease
- End stage: Eisenmenger's syndrome

Atrial Septum Formation

- Septum Primum grows downward
- Ostium Primum obliterates
- Fenestration in septum primum forms ostium secundum
- Septum secundum grows downward and fuses with endocardial cushions
 - Leaves oval-shaped opening Foramen ovale
- Superior edge of septum primum regresses
 - Lower edge becomes flap of FO

Atrial Septal Defect

- Persistent communication between RA and LA
- Common: 1/1500 live births
 7% of CHD
- Can occur anywhere in septum
- Physiologic consequences depend on:
 - Location
 - Size
 - Association with other anomalies

ASD Types

Ostium Secundum ASD (70%)

- 2:1 F>M
- Familial recurrence 7-10%
 - Holt-Oram syndrome upper limb defects
- Region of FO
- Defect in septum primum or secundum

Ostium Primum ASD

- Inferior portion of septum
- Failure of fusion between septum primum and endocardial cushions
- Cleft in MV or CAVC

ASD Types

- Sinus Venosus ASD (10%)
 - Incomplete absorption of sinus venosus into RA
 - IVC or SVC straddles atrial septum
 - Anomalous pulmonary venous drainage

Coronary Sinus ASD

- Unroofed coronary sinus
- Wall between LA and coronary sinus missing
- Persistent L-SVC

Patent Foramen Ovale

- Prevalence 30% of population
- Failure of fusion of septum primum and secundum (flap of FO)
- Remains closed as long as LAp>RAp
 - LAp<RAp</p>
 - Pulmonary HTN / RV failure
 - Valsalva
 - Paradoxical embolism and STROKE

ASD: Manifestations

- L to R shunt between LA and RA
 - Amount of flow determined by:
 - Size of defect
 - Relative compliance of RV / LV
 - Shunt flow occurs only in diastole
 - L to R shunt ↑ with age
 - RV compliance †
 - LV compliance ↓

RA and RV volume overload

ASD: Signs/Symptoms

- Infant/child usually asymptomatic
 - DOE, fatigue, lower respiratory tract infections
- Adults (prior age 40)
 - Palpitations (Atrial tach 2° RAE)
 - ↓ stamina (Right heart failure)
 - Survival less than age-matched controls (5th-6th decade)

ASD: Physical Exam

- Small for age
- Wide fixed split S2
- RV heave

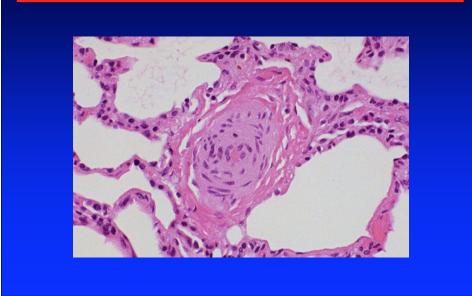
ASD: Laboratory Studies

- CXR: cardiomegally, ↑ PVM
- EKG: RAD, RVH, RAE, IRBBB – Primum ASD: LAD
- ECHO: RAE, RV dilation, ASD size, location, amount and direction of shunt

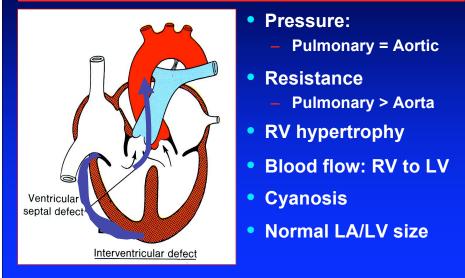
CATH: O2 step up in RA

ASD: Management

- Indications for closure
 - RV volume overload
 - Pulmonary hypertension
 - Thrombo-embolism


Closure method

- Surgical
- Catheter Delivered Device
 - Cardioseal
 - Amplatzer septal occluder

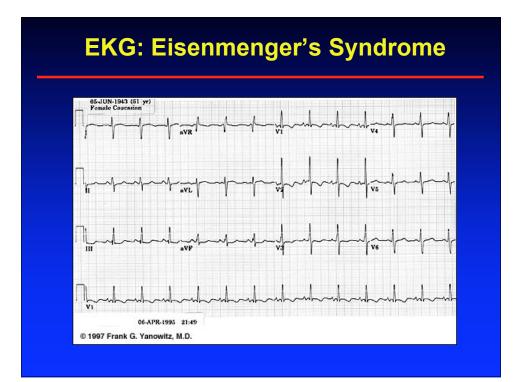

Eisenmenger's Syndrome

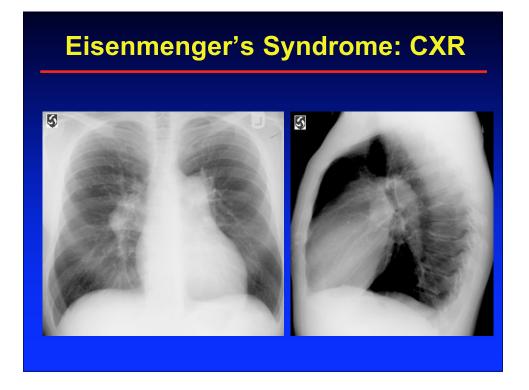
- Dr. Victor Eisenmenger, 1897
- Severe pulmonary vascular obstruction 2° to chronic left to right shunts
- Pathophysiology
 - High pulmonary blood flow→ Shear Stress
 - Medial hypertrophy + intimal proliferation leads to ↓cross-sectional area of pulm bed
 - Perivascular necrosis and thrombosis
 - Replacement of normal vascular architecture
- Pulmonary vascular resistance increases
 Right to left shunt
 - Severe cyanosis

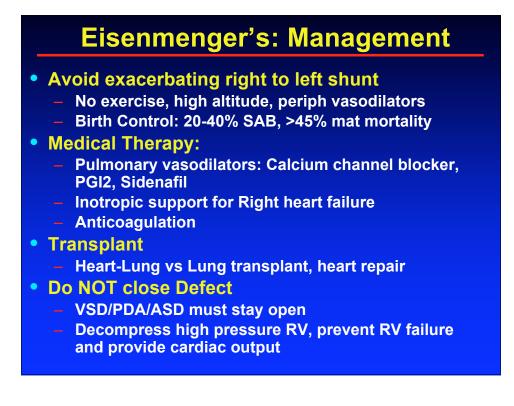
Medial Hypertrophy

Eisenmenger's Syndrome R to L flow via VSD

Eisenmenger's: Signs/Symptoms


- Infancy:
 - CHF improves with ↓ left to right shunt
- Young adulthood:
 - Cyanosis/Hypoxia: DOE, exercise intolerance, fatigue, clubbing
 - Erythrocytosis/hyperviscosity: H/A, stroke
 - Hemoptysis 2° to infarction/rupture pulm vessels


Eisenmenger's: Physical Exam


- Clubbing
- Loud S2
- RV heave (RV hypertension)
- Diastolic pulm insufficiency murmur
- No systolic murmur

Eisenmenger's: Lab findings

- No LV volume overload / ↑ RV pressure
- CXR: Clear lung fields, prominent PA segment with distal pruning, small heart
- EKG: RAE, RVH ± strain
- ECHO: RV hypertrophy, right to left shunt at VSD, PDA, or ASD

Learning Objectives

- Learn the relationships between pressure, blood flow, and resistance
- Review the transition from fetal to mature circulation
- Correlate clinical signs and symptoms with cardiac physiology as it relates to left to right shunt lesions:
 VSD, PDA, ASD
- Discuss Eisenmenger's Syndrome