Myocardial Diseases

Mario C Deng & Charles C Marboe
Columbia University
New York, USA

context

- Cardiac cycle
- Valvular heart diseases
- Ischemic heart diseases
- Congenital heart diseases
- Myocardial diseases

objectives

- classify myocardial diseases into three major phenotypes
- describe their clinical presentation during the initial encounter
- delineate the diagnostic process and the role of different tests
- interpret these results in the context of pathophysiology
- employ the stages of heart failure to delineate therapeutic steps
Doc, can you help me with my advanced heart failure?

- low ejection fraction
- cardiac dilatation
- ventricular arrhythmia
- inotrope requirement
- chronic hyponatremia
- organ dysfunction
- severe symptoms
- frequent hospitalization

right & left heart catheter
cardiac cycle - ECG & pressures

Preload
- The length of a cardiac muscle fiber prior to the onset of contraction.
 - Frank Starling

Afterload
- The force against which a cardiac muscle fiber must shorten.
 - Isotonic Contraction

Contractility
- The force of contraction independent of preload and afterload.
 - Inotropic State

the pressure volume loop

http://www.columbia.edu/itc/hs/medical/heartsim/
AHF pathophysiology & therapy

- adrenergic system
- renin-angiotensin
- endothelin system
- growth hormone
- + hypoperfusion -
- + congestion -
- + organ failure -
- + cachexia -
- natriuretic system
- + afterload -
- + preload -
- + contractility -
- + heart rate -
- + remodeling -
- + ischemia -
- + arrhythmia -
- + remodeling -
- + contractility -
- + heart rate -
- + ischemia -
- + arrhythmia -

Medical Center

age, sex & heart failure

Average annual incidence/1000

epidemiology

- advanced cancer
- heart failure
- population

macroscopic pathology

- hypertrophic cardiomyopathy
- normal
- dilated cardiomyopathy

cardiomyopathy phenotypes
systems biology strategy

- level distinction
- relationships within levels
- relationships between levels
- iterative strategy

clinical picture 1

clinical picture 2

proteome

transcriptome

genome

NYPH

Hammer Health Sciences Building

cardiomyopathy phenotypes

- dilated cardiomyopathy
- hypertrophic cardiomyopathy
- restrictive cardiomyopathy
transgenic animals

Cardiac Compartment-specific Overexpression of a Modified Retinoic Acid Receptor Produces Dilated Cardiomyopathy and Congestive Heart Failure in Transgenic Mice

Colbert CM, Robbins J

Shuldiner AR. NEJM 1996;334:653

specific cardiomyopathies

- Ischemic
- Valvular
- Hypertensive
- Inflammatory (Idiopathic, Autoimmune, Infectious)
- Metabolic (Endocrine, Amyloid)
- General system Disease (Connective Tissue Disorders)
- Muscular Dystrophies
- Neuromuscular Disorders
- Sensitivity and Toxic Reactions
- Peripartum

ischemic dilated cardiomyopathy

Initial presentation
- 55 y male
- Married, 2 kids
- Large anterolateral wall AMI
- 10/31/04 Impella pump
- 11/03/04 HeartMate 1 MCSD
- Evaluation for heart transplant
- 2/17/05 heart transplant
- Stable post-transplant course
- Back to work and normal life

Teaching points
- Benefits of hi-tech medicine

follow-up
- Holter post-transplant course
- Back to work and normal life

GE 44754815 *1950 m
married, 2 kids

large anterolat wall AMI

10/31/04 Impella pump

11/03/04 HeartMate 1 MCSD

evaluation for heart transplant

2/17/05 heart transplant

stable post-transplant course

back to work and normal life

initial presentation

follow-up

benefits of hi-tech medicine

teaching points

ECG ischemic cardiomyopathy

GE #4734815 *1950 m

DCM TTE - parasternal axis
DCM TTE – apical 2/4 chamber view

DCM TTE – AV/MV velocity

Calculated CO = 2.1 L/min
Tei index 0.85

DCM TTE – E deceleration time
DCM TTE – early mitral flow

DCM TTE – PA pressure

endomyocardial biopsy
massocopic pathology

normal dilated cardiomyopathy

idiopathic dilated cardiomyopathy

Masson trichrome stain
extensive interstitial fibrosis (blue) with myocytes in red and epicardial fat/pericardium to the left
idiopathic dilated cardiomyopathy

Hematoxylin & eosin stain:
Myocyte hypertrophy (very enlarged and irregular nuclei)

myocarditis

Inflammatory infiltrate in the myocardium associated with myocyte damage
giant cell myocarditis

Multinucleated giant cells

chagas disease

Trypanosoma cruzi

Amastigotes
dilated cardiomyopathy

- **pathology**
 - enlargement of all four chambers, mild hypertrophy, interstitial fibrosis

- **pathophysiology**
 - Frank-Starling mechanism, neurohormonal activation, myocardial remodeling

- **etiology**
 - genetic, infectious, inflammatory, toxic, metabolic, neuromuscular

decreased contractility

<table>
<thead>
<tr>
<th>Etiologies</th>
<th>Parameter</th>
<th>Normal</th>
<th>MI</th>
<th>MI + Remodeling</th>
<th>MI + HF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic Cardiomyopathy</td>
<td>PCWP (mm Hg)</td>
<td>3.7</td>
<td>2.1</td>
<td>2.0</td>
<td>2.3</td>
</tr>
<tr>
<td>– Myocardial Infarction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Myocardial Infarction</td>
<td>SV (ml)</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>Toxins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Anthracline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Alcohol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Cocaine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myocarditis</td>
<td>Cardiac Output (L/min)</td>
<td>10</td>
<td>16</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>– Anthracline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Alcohol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Cocaine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

heart failure & remodeling

Mann DL et al. *Circulation* 1999;100:995-1008
transcriptome > proteome > phenotype

- gene
 - Ca++-, K+-channel
 - Na+/H+ antiporter
 - SERCA2
 - Phospholamban
 - Ryanodine receptor
 - β1-adrenoceptors
 - M2 muscarinic receptors
 - Gαi-2 subunit
 - ATII-R1
 - myosin heavy chain V3
 - Atrial natriuretic peptide
 - endothelin
 - iNOS
 - TNF-α, IL6
 - titin, desmin, vinculin
 - type I, III, V collagen
 - MMP1, 9, TIMP1-4
 - Fibronection, laminin

- cell
 - cell size
 - cell nucleus
 - DNA repair
 - mitochondrion mass
 - apoptosis

- organ
 - cardiac mass
 - LVEDP
 - LVEDV
 - wall stress
 - ejection fraction
 - shortening velocity
 - fibrosis

- organism
 - Dilated cardiomyopathy
 - Prognosis
 - 1-year survival 10-90%, 5-year survival 50%
 - Improved with active therapy
 - Therapy
 - underlying cause, relief of congestion, augmentation of cardiac output, prevention of arrhythmias and thromboemboli

Framingham Study - mortality

CHF stages and steps of treatment

Stage A
High risk with no symptoms

Stage B
Structural heart disease, no symptoms

Stage C
Structural disease, prior or current symptoms

Stage D
Refactory symptoms requiring special intervention

Risk factor reduction, patient and family education
Treat HTN, DM, CAD, dyslipidemia. ACEI when appropriate
ACE inhibitors, ARB's, beta-blockers when appropriate
ACE inhibitors and beta-blockers in all patients

Aldosterone antagonists
Sodium restriction, diuretics, and digoxin

Short-term inotrope, nesiritide
Mitral or CABG surgery

Inotropes, nesiritide
CRT, ICD if applicable

VAD, TX
Bumetanide, mexiletine

Cardiomyopathy phenotypes

Dilated cardiomyopathy
Hypertrophic cardiomyopathy
Restrictive cardiomyopathy
hypertrophic cardiomyopathy genetics

- autosomal dominant trait
 - 2/3 of patients have family history
- more than 200 mutations in 10 genes encoding contractile sarcomeric proteins
- two genes for non-sarcomeric proteins and mitochondrial genome

HCM mutation frequencies

<table>
<thead>
<tr>
<th>Gene</th>
<th>Occurrence</th>
<th>Frequency %</th>
<th>Number of Mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>MYH7</td>
<td>10%</td>
<td>5–10%</td>
<td>> 0.0</td>
</tr>
<tr>
<td>MYBPC3</td>
<td>40%</td>
<td>20–30%</td>
<td>= 0.0</td>
</tr>
<tr>
<td>Desmin</td>
<td>19%</td>
<td>= 0.0</td>
<td>= 0.0</td>
</tr>
<tr>
<td>Na/K ATPase</td>
<td>19%</td>
<td>= 0.0</td>
<td>= 0.0</td>
</tr>
<tr>
<td>Titin</td>
<td>10%</td>
<td>> 0.0</td>
<td>= 0.0</td>
</tr>
<tr>
<td>MLC-1 C</td>
<td>5%</td>
<td>> 0.0</td>
<td>= 0.0</td>
</tr>
<tr>
<td>MLC-2 C</td>
<td>5%</td>
<td>> 0.0</td>
<td>= 0.0</td>
</tr>
<tr>
<td>Troponin C</td>
<td>5%</td>
<td>> 0.0</td>
<td>= 0.0</td>
</tr>
<tr>
<td>Troponin A</td>
<td>5%</td>
<td>> 0.0</td>
<td>= 0.0</td>
</tr>
<tr>
<td>Troponin T</td>
<td>5%</td>
<td>> 0.0</td>
<td>= 0.0</td>
</tr>
</tbody>
</table>

Hypertrophic cardiomyopathy

- initial presentation
 - 44 y female
 - heart murmur since childhood
 - married, 4 kids
 - 3/6/06 mitral valve repair & myectomy
 - 3/8/06 mitral valve replacement
 - complicated postoperative course

- follow-up
 - good long-term recovery

- teaching points
 - HCM medically challenging
hypertrophic cardiomyopathy

- history
 - sudden death during vigorous exertion, syncope, angina, dyspnea

- physical exam
 - S4, systolic murmur (LVOT obstruction - increased by Valsalva, MR)

- diagnostic tests
 - X-ray
 - ECG (LBBB, LVH)
 - Echocardiogram (asymmetric hypertrophy)
 - Catheterization (LVOT gradient)
 - Genetic testing
HCM TTE – SAM & malcoaptation

Grigg LE, Wigle ED, Rakowski H. J Am Coll Cardiol 20:42, 1992

HCM TTE – SAM & obstruction

HCM TTE – LVOT obstruction

cardiomyopathy phenotypes

- dilated cardiomyopathy
- hypertrophic cardiomyopathy
- restrictive cardiomyopathy

amyloidosis cardiomyopathy

- PRIMARY: amyloid light chain (AL)
 - lambda: kappa = 2:1
- SECONDARY: serum amyloid A (AA)
- SENILE CARDIAC: (SCA); transthyretin
- FAMILIAL: autosomal dominant with mutations in
 - transthyretin, gelsolin, apolipoprotein A-I, lysozyme,
 - or fibrinogen genes.

iron storage disorders

- Iron overload – Hemosiderosis – following multiple
 blood transfusions.
- Hereditary Hemochromatosis
 - Autosomal recessive
 - HFE gene on chromosome 6
 - Increased intestinal absorption of dietary iron
Restrictive cardiomyopathy

Initial presentation
- 51 yo male
- Banker, kids
- Rapidly progressive heart failure
- Heart transplant evaluation
- Heart transplantation: BLS
- Autologous stem cell transplantation (CAMP9)

Follow-up
- Successful post-heart/stemcell transplant course

Teaching points
- Amyloid-related cardiomyopathy: DD
- Restrictive cardiomyopathy: Xray
- ECG restrictive cardiomyopathy

LD #4379458 *1952 m
restrictive cardiomyopathy

- history
 - Fatigue, exercise tolerance ↓

- physical exam
 - rales, neck veins ↑, ascites, peripheral edema, KUSMAUL SIGN

- diagnostic tests
 - Xray: normal sized heart, congestion
 - ECG: ST-T changes, atrial fibrillation, BBB
 - echocardiography
 - endomyocardial biopsy

RCM TTE – parasternal view

RCM TTE – apical view
RCM TTE – restrictive mitral filling

Decel time = 102 msec

RCM TTE – tissue doppler

- Abnormally low E'
- (Atrial mechanical failure)
- (Low systolic velocity)

RCM TTE – tissue doppler

Impaired relaxation - reduced propagation velocity
Hypertrophic Cardiomyopathy

- Normal

Concentric Hypertrophy

- Macroscopic pathology

Microscopic Pathology HCM

- Myocyte disarray

Microscopic Pathology Amyloid

- Amyloid encircling a myocyte (original magnification, x1890)

Microscopic Pathology Amyloid

- Amyloid: 7-10 nm fibrils haphazardly arranged
Congo Red stain of amyloid deposits in the heart.

Amyloid deposits are birefringent.

Congo Red stain under polarized light: Amyloid deposits are birefringent.

Macroscopic pathology amyloid.
iron storage disease

Endomyocardial Biopsy: Iron storage disease in the heart

Iron deposits in myocytes and interstitial macrophages

Prussian Blue stain: Iron is blue
hypertrophic cardiomyopathy

- pathology
 - asymmetric septal hypertrophy, myocardial fibers in disarray, compensated
 or unmasked dilatation

- pathophysiology
 - compliance and relaxation reduced, dynamic LV outflow tract obstruction,
 abnormal motion of the anterior mitral leaflet

- etiology
 - sarcomere abnormalities (myosin heavy chain, cardiac trop T, myosin-
 binding protein C, familial dominant mechanism)

restrictive cardiomyopathy

- pathology
 - abnormally rigid ventricles (not necessarily hypertrophied), endocardial fibrosis or scarring
 or myocardial infiltration

- pathophysiology
 - upward shift of passive ventricular filling curve > elevated pulmonary and systemic venous
 pressures
 - reduced cavity size > stroke volume/cardiac output \\

- etiology
 - infiltrative: amyloidosis, sarcoidosis
 - storage disease: hemochromatosis, glycogen storage diseases
 - endocardial fibrosis
 - hyperesinophilic syndrome
 - metastatic tumors
 - radiation therapy
 - noninfiltrative: scleroderma, idiopathic

decreased filling

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Normal</th>
<th>HCM</th>
<th>HCM + HF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitral Stenosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constriction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restrictive Cardiomyopathy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac Tamponade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertrophic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiomyopathy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infilitrative Cardiomyopathy</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Normal</th>
<th>HCM</th>
<th>HCM + HF</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP (mm Hg)</td>
<td>120/80</td>
<td>110/70</td>
<td>110/80</td>
</tr>
<tr>
<td>Cardiac Output (L/min)</td>
<td>3.7</td>
<td>3.4</td>
<td>4.0</td>
</tr>
<tr>
<td>PCWP (mm Hg)</td>
<td>10</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>
LV outflow tract obstruction

- Early systole
- Mitral leaflet-septal contact

Ventricular remodeling

Hypertrophic cardiomyopathy

- Prognosis
 - Depends on mutation
 - Sudden death 4-6% per year (children), 2-4% (adults)

- Therapy
 - Avoid strenuous exercise
 - B-blockers (myocardial oxygen demand ↓, LVOT gradient ↓)
 - CA-channel antagonists
 - Amiodarone (a-fib)
 - Antibiotic prophylaxis
 - Septal ablation with ethanol
 - Septal ablation with alcohol
 - Myomectomy
restrictive cardiomyopathy

- **prognosis**
 - Very poor prognosis

- **therapy**
 - Salt restriction
 - Diuretics (cautious use)
 - Maintenance of SR
 - Intraventricular thrombus: anticoagulation

amyloidosis management

Heart-liver transplantation? Heart-autologous BM transplantation?
Summary Cardiomyopathies

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Dilated</th>
<th>Hypertrophic</th>
<th>Restrictive</th>
</tr>
</thead>
<tbody>
<tr>
<td>History</td>
<td>Left heart failure</td>
<td>S0R, cP, syncope</td>
<td>Right heart failure</td>
</tr>
<tr>
<td>Physical Exam</td>
<td>S3, S4, MR</td>
<td>S4, valsalva+ murmur</td>
<td>Kussmaul sign</td>
</tr>
<tr>
<td>Chest X-ray</td>
<td>LV enlargement, PVL</td>
<td>LA enlargement</td>
<td>PVH</td>
</tr>
<tr>
<td>ECG</td>
<td>SR+, ST-T, ic abnormal</td>
<td>LVH</td>
<td>Low volt, AV cond</td>
</tr>
<tr>
<td>Echo</td>
<td>Chamber dilat, regurg</td>
<td>Asymm LVH, SAM</td>
<td>RA/PC↑, square root</td>
</tr>
<tr>
<td>Biopsy</td>
<td>Cad, RA/PC↑, CO↓</td>
<td>Comp, LVOT grad</td>
<td>RA/PC↑, square root</td>
</tr>
<tr>
<td>Therapy</td>
<td>R/o myocarditis</td>
<td>DiD restrictive</td>
<td>R/o infiltrative</td>
</tr>
<tr>
<td></td>
<td>Systolic HF guidelines</td>
<td>BB, CA, cave volume</td>
<td>Systemic approach</td>
</tr>
</tbody>
</table>

Braunwald E. Heart Disease (4th Ed). Saunders, Philadelphia

Top 10 Controversies

- Classification or staging
- Risk stratification
- Choice of BB/ACEI
- Role of added ARB
- Risks of aldo-antagonists
- Role of infusion therapy
- Indication for ICD
- Indication for CRT
- Timing of MCSD
- Selection for Htx

No successful recompensation?

End-of-life situation?

Yes

Unsuccessful recompensation?

No

Chronic renal failure & evaluation for ischemia?

Yes

Pump failure?, arrhythmias?

No

Cardiac catheter

Yes

Potential Htx or chronic MCSD

ICU

Floor/home

Columbia University Medical Center

Teaching

Patient care

Research