SUDDEN CARDIAC DEATH

EPIDEMIOLOGY, PATHOPHYSIOLOGY, PREVENTION & THERAPY

Hasan Garan, M.D. Columbia University Medical Center

SUDDEN CARDIAC DEATH(SCD): Definition

DEATH DUE TO A CARDIAC CAUSE IN A CLINICALLY STABLE PATIENT, WITH OR WITHOUT PRE-EXISTING HEART DISEASE, WITHIN A PERIOD OF UP TO ONE HOUR AFTER AN ABRUPT AND DRASTIC CHANGE IN CLINICAL STATUS

SUDDEN DEATHS - INCIDENCE AND TOTAL EVENTS		
OVERALL INCIDENCE IN ADULT POPULATION	PERCENT / YEAR	EVENTS / YEAR
HIGH CORONARY RISK SUB-GROUP		
ANY PRIOR CORONARY EVENT	Netsitie	
E.F. < 30%; HEART FAILURE		
OUT-OF-HOSPITAL CARDIAC ARREST SURVIVORS		
CONVALESCENT PHASE		1

CAUSES OF SCD

- CARDIAC ARRHYTHMIA
 - Ventricular tachycardia/fibrillation
 - Asystole without an escape rhythm
- ELECTROMECHANICAL DISSOCIATION
 - Massive myocardial infarction
 - Pericardial tamponade

PATHOPHYSIOLOGY OF VT/VF

SCD CLINICIAN'S VIEW

DISEASES & CONDITIONS PREDISPOSING TO SCD

STRUCTURAL HEART DISEASE: ACQUIRED

- A) Acute myocardial infarction
- B) Chronic ischemic heart disease
- C) Hypertensive heart disease
- D) Dilated non-ischemic cardiomyopathy
- Alcoholic, post-inflammatory E) Mixed dilated and hypertrophic: valve disease
- F) Infiltrative cardiomyopathy
- G) Cardiac sarcoidosis

DISEASES & CONDITIONS PREDISPOSING TO SCD

STRUCTURAL HEART DISEASE: CONGENITAL

- A) Hypertrophic cardiomyopathies
- B) Congenital dilated cardiomyopathies
- B) Arrhythmogenic right ventricular dysplasia/CMs
- C) Anomalous coronary arteries
- D) Adult congenital heart diseases
- E) Mitral valve prolapse

DISEASES & CONDITIONS PREDISPOSING TO SCD

CHANNELOPATHIES/PRIMARY ELECTRICAL DISTURBANCES

A) Long QT syndromes

B) Brugada syndrome

- C) Wolff-Parkinson-White syndrome
- D) Familial catecholaminergic polymorphic VT
- E) Short QT syndrome
- F) Other repolarization abnormalities

DISEASES & CONDITIONS PREDISPOSING TO SCD

REVERSIBLE CONDITIONS

A) Myocardial ischemia

- B) Severe electrolyte imbalance
- C) Acquired long QT syndrome
- D) Proarrhythmic effects of drugs
- E) Interactions with genetic polymorphisms

VENTRICULAR TACHYCARDIA IN A

GENES IDENTIFIED TO DATE IN LQT SYNDROME

Disease	Gene (historical name	e) Protein
LQT1	KCNQ1 (KVLQT1)	$I_{KS}K^+$ channel α subunit
LQT2	KCNH2 (HERG)	IgrK* channel α subunit
LQT3	SCN5A	I _M Na* channel α subunit
LQT4	ANKB	Ankyrin-B
LQT5	KCNE1 (minK)	IKsK* channel & subunit
LQT6	KCNE2 (MiRP1)	I _{kr} K+ channel β subunit
LQT7	KCNJ2	IK12 1K* channel & subunit
LQT8	CACNA1	Cav1.2 Calcium channel a subu

LONG-TERM FOLLOW-UP IN LQTS

• 328 PROBANDS PRESENTING WITH SYNCOPE

• 1692 FAMILY MEMBERS

LQTS-RELATED DEATH 0.9% PER YEAR IN PROBANDS, HIGHER THAN BOTH AFFECTED AND UNAFFECTED FAMILY MEMBERS

3 RISK FACTORS IDENTIFIED FOR TOTAL GROUP WITH F/U (N=1496, 72 EVENTS) OT_c DURATION • CARDIAC EVENT AT PRESENTATION • RESTING HEART RATE

Moss et al. Circulation 1991; 84: 1139-1144

<section-header><section-header><text><text><text><text>

CAUSES OF ACQUI	RED LONG QT
Drugs Orugs that frequently cau Disopyramide Dotelinde Ibuilide Ibuilide Procanamide Quindime Sotalol Drugs clearly associated but with law incidence Amiotarone Arsenic trixis Erythromycin Droperidol Halopendol Thioridazine Methadone Heart block Hypokalemia, hypomagnesemia [®] Acute myocardial infarchen [®] Subarachnoid hermorthage and other forms	se torsade de pointes with torsade de pointes le CNS injury ⁶ of starvation ⁶

SCD DETECTION OF RISK

RISK STRATIFICATION AND UNDERLYING HEART DISEASE

AVAILABLE TESTING METHODS/PREDICTIVE MARKERS

INVASIVE

Programmed Cardiac Stimulation (PCS)

NON-INVASIVE

Ventricular Systolic Function (Echocardiogram, MUGA Scan, MRI) Ambulatory Cardiac Rhythm Monitoring for VEA/NSVT T-Wave Alternans Exercise Testing HR Variability Baroreflex Sensitivity QT Dispersion SAECG Genetic Markers

LARGE NUMBERS OF PATIENTS AT RISK

- Need simple, inexpensive, non-invasive diagnostic tests with high clinical accuracy
 - sensitivity: percentage of patients with the disease identified by the test. Need screening tests with high sensitivity not to miss any patients at high risk.
 - positive predictive accuracy (ppa): percentage of patients with a positive test that will go on to have an event. Need screening tests with high ppa to minimize unnecessary treatment with expensive therapies in patients not at high risk

PCS: Limitations

- Sensitivity of PCS in ischaemic heart disease is acceptable, but its PPA is poor.
- In non-ischaemic CM, there is up to 40% incidence of clinical arrhythmic events in "non-inducible" group.
- There are no reproducible data to justify its clinical utility in HCM.
- Not even applicable in "channelopathies".

SCD TREATMENT & PREVENTION

- I) IMPLANTABLE CARDIOVERTER DEFIBRILLATOR (ICD) THERAPY
- II) ANTIARRHYTHMIC DRUG THERAPY
- III) CATHETER ABLATION
- IV) SURGERY

SCD: SECONDARY PREVENTION Treating survivors of out-of-hospital cardiac arrest with documented VT/VF

There are no controlled studies with placebo or no-treatment arm

Randomized trials: Implantable Cardioverter/Defibrillator (ICD) vs Antiarrhythmic Drugs (AADs)

All randomized trials have shown that ICD therapy is superior to AAD (mostly amiodarone) therapy

Primary Prevention vs. Secondary Salvage

- Salvage rate for patients with sudden cardiac arrest is < 2%
- Therefore the major task is to identify patients at risk prior to the event
 - focus on primary prevention
 - identify and treat

SCD: Difficulties with Primary Prevention

- · Large numbers of patients at risk
 - Need for simple, inexpensive, non-invasive tests with high sensitivity
- Low incidence of sudden cardiac death
 among patients with known heart disease
 - Post myocardial infarction mortality rates ~5%
 - Low specificity of the tests for risk stratification

SCD: PRIMARY PREVENTION

ANTIARRHYTHMIC DRUG (AAD) TRIALS

None of the several prospective, controlled, AAD trials, except for one, in high-risk patients (post-MI, CHF) showed any survival benefit with AAD

SCD: PRIMARY PREVENTION ICD THERAPY

- 4 randomized, prospective trials showed survival benefit with ICD in:
 Ischaemic heart disease and non-sustained VT (MUSTT)
 - Ischaemic heart disease and depressed LV function (MADIT I,
 - MADIT II)
 - CHF and depressed LV function (ischaemic or non-ischaemic) (SCD-HeFT)
- ICD-related survival benefit not established in:
 - Patients undergoing surgical coronary revascularization
 - Implantation immediately after acute MI

ICD THERAPY IN ISCHAEMIC AND NON-ISCHAEMIC CARDIOMYOPATHY: INDICATIONS

Chronic ischaemic heart disease with LVEF<40%, documented non-sustained VT, and electrically inducible VT/VF

Chronic/subacute ischaemic heart disease with LVEF <35%, and electrically inducible VT/VF $\,$

Chronic/subacute ischaemic heart disease with LVEF<30%

Ischaemic or non-ischaemic cardiomyopathy with LVEF<35%, and Class II or III congestive heart failure

ICD THERAPY IN HCM: INDICATIONS

Survivors of cardiac arrest (VT/VF) Spontaneous sustained VT Unexplained syncope Family history of premature SCD Maximum LV thickness ≥ 30 mm (controversial in absence of any other risk factor) Abnormal BP response to exercise Non-sustained VT Certain mutations in individuals (specific beta-myosin heavy chain and troponin T mutations)

ICD THERAPY IN "CHANNELOPATHIES": INDICATIONS

LQTS PRESENTING WITH CARDIAC ARREST

LQTS WITH

RECURRENT SYNCOPE ON BETA BLOCKER RX POSITIVE FAMILY HX FOR SUDDEN DEATH CHILD WITH MARKEDLY PROLONGED QT AT BASELINE

IDIOPATHIC VF

PATIENTS WITH BRUGADA SYNDROME, WHO ARE SYMPTOMATIC OR HAVE A POSITIVE FAMILY HISTORY AND A POSITIVE RESPONSE TO PCS

CONCLUSIONS

- Overall the vast majority of SCD results from VT/VF in patients with advanced organic heart disease with poor ventricular function
- The majority of SCD in young patients results from congenital cardiomyopathies or more rarely congenital electrical disturbances in the absence of structural heart disease
- There is no effectively preventive drug therapy for SCD
- ICD therapy remains the only known effective method for protection of patients at high risk