
\qquad
\qquad
\qquad

- Normal Circulatory Dynamics

Physiology

- Pulmonary Hypertension

Definition

Classification
Pathology
Pathophysiology
Clinical Manifestations
Diagnosis
Treatment

Pulmonary Circulation

\qquad

- Low resistance, high compliance vascular bed
- Only organ to receive entire cardiac output (CO)
- Changes in CO as well as pleural/alveolar pressure affect pulmonary blood flow
- Different reactions compared to the systemic circulation
- Normally in a state of mild vasodilation
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Exercise
- Pulmonary blood flow increases up to 4-
5x BL
- Increased flow accommodated by both
recruitment and vasodilation
- Net effect is a decrease in pulmonary
vascular resistance (PVR)
- No further decrease in PVR once all
vessels fully recruited and dilated

\qquad
\qquad
Pulmonary blood flow increases up to 45x BL

- Increased flow accommodated by both recruitment and vasodilation

Net effect is a decrease in pulmonary vascular resistance (PVR)

No further decrease in PVR once all vessels fully recruited and dilated

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Normal Hemodynamic Measurements During Right Heart Catheterization

Oudiz RJ, Langleben D. Advances in Pulmonary Hypertension 2005;4(3):15-25

Normal Pulmonary Hemodynamics at Sea Level (Rest and Mild Exercise) and at Elevated Altitude (Rest)			
	Sea level Rest	Sea level Mild Exercise	$\begin{gathered} \text { Altitude } \\ (\sim 15,000 \mathrm{ft}) \\ \text { Rest } \end{gathered}$
Pulmonary arterial pressure, (mean) mmHg	20/10(15)	30/13(20)	38/14(26)
Cardiac output, L/min	6.0	12.0	6.0
Left atrial pressure (mean), mmHg	5.0	9.0	5.0
Pulmonary vascular resistance, units	1.7	0.9	3.3

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Pulmonary Hypertension: Definition

PAP mean $\geq 25 \mathrm{~mm} \mathrm{Hg}$ at rest or $\geq \mathbf{3 0} \mathbf{~ m m H g}$ with exercise \qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

```
    Pre-capillary PH:
    Pulmonary Arterial Hypertension
    Definition
- PAP mean \(\geq 25 \mathrm{mmHg}\) at rest or \(\geq 30 \mathrm{mmHg}\) with exercise
```


AND

```
- PCWP or LVEDP \(\leq 15 \mathrm{mmHg}\)
- PVRI \(\geq 3\) units • \(\mathrm{m}^{2}\)
- No left-sided heart disease
```

\qquad

Post-capillary PH:
Pulmonary Venous Hypertension Definition

- PAP mean $\geq \mathbf{2 5} \mathbf{~ m m H g}$ at rest or $\geq 30 \mathbf{~ m m H g}$ with exercise

AND

- PCWP or LVEDP >15mmHg

Post-capillary PH:

Pulmonary Venous Hypertension Classification

Post-capillary PH:
Pulmonary Venous Hypertension Localizing the Problem

- Left Heart Etiologies - Aorta - coarct, stenosis
-LV -AS, AR, CM, constriction, myocardial disease, MS, MR, ischemic heart disease, congestive heart failure, diastolic dysfunction
-LA - Ball-valve thrombus, myxoma, cor triatriatum

Post-capillary PH:
Pulmonary Venous Hypertension
Localizing the Problem

```
- Venous Etiologies
- Pulmonary Veins -stenosis
-mediastinal fibrosis -neoplasm -pulmonary venoocclusive disease
```


\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mixed (Pulmonary Venous and Pulmonary Arterial Hypertension): Definition

- PAP mean $\geq 25 \mathrm{mmHg}$ at rest or ≥ 30 mmHg with exercise
- PCWP or LVEDP >15 mmHg
- PVRI ≥ 3 units • \mathbf{M}^{2}
- Increased Transpulmonary Gradient Across Pulmonary Vascular Bed

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Effects of pulmonary

hypertension on RV myocardial

- Myocardial peperfititigbes from being both systolic and diastolic to mostly diastolic
- The RV hypertrophies, but coronary blood supply remains unchanged
- RV work is dramatically increased without a compensatory increase in coronary blood flow
- Tachycardia makes everything worse

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Pulmonary Arterial Hypertension:

Clinical Manifestations - Symptoms

-Dyspnea on Exertion/Rest
-Fatigue
-Chest Discomfort/Pain
-Cough
-Syncope/Presyncope
-Hemoptysis
-Edema
-Hoarseness

PAH: Clinical Manifestations	
- Dyspnea	- Syncope
- Reduced O2	- Hypotension due to
diffusion	systemic vasodilation
- Ventilation-	and fixed pulmonary
perfusion	resistance
mismatching	- Arrhythmia
- Low O2 transport	- Edema, hepatic
- Angina	congestion, ascites
- RV ischemia	- RV failure
- Left main	
coronary	
compression	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Diagnosis of PH: Procedures

- Electrocardiogram
- Chest radiography
- Echocardiogram
- Ventilation perfusion scan (V/Q scan)
- Serologic studies, HIV
- Pulmonary function tests (PFT)
- Sleep study (if indicated)
- Right-heart catheterization (with acute vasodilator testing if PAH)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

	Echocardiogram Estimate of RVSP
	- $4 V^{2}=$ Pressure Gradient ($\Delta \mathrm{P}$) (Modified Bernoulli Equation) - RVSP - RAP mean = ΔP - RVSP = RAP mean $+\Delta P$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

PH: Congestive Heart Failure - CXR hilar fullness and haziness

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Diagnosis of PH: \qquad
ECHO May Suggest an Underlying Etiology

- LV diastolic dysfunction Post-capillary pulmonary venous
- MS or MR
- LV systolic dysfunction hypertension
- Congenital heart disease, e.g. ASD, VSD, PDA
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Cardiac Catheterization

\qquad

- To exclude congenital heart disease
- To measure PCWP or LVEDP
- To establish severity and prognosis
- Acute vasodilator drug testing

Cardiac catheterization should be performed in patients with suspected pulmonary hypertension

Pulmonary Arterial Hypertension
Classification

\qquad

Treatment: Pre-capillary PH Pulmonary Arterial Hypertension

- Treat associated conditions, e.g. thyroid disease
- Early surgery to repair congenital heart disease, e.g. VSD, PDA
- However, if no longer "operable" due to progressive pulmonary vascular obstructive disease, "corrective" surgery is contra-indicated
- Medical PAH Therapy
- Lung or Heart-Lung Transplantation

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Acute Pulmonary Edema
- Cardiogenic Pulmonary Edema
- Noncardiogenic Pulmonary Edema

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Physiology of Microvascular Fluid

 Exchange in the Lung
\qquad
\qquad
\qquad
\qquad
\qquad

Physiology of Microvascular Fluid Exchange in the Lung

Ware L and Matthay M. N EngI J Med 2005;353:2788-2796
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Representative Chest Radiograph from Patient with Cardiogenic Pulmonary Edema
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Representative Chest Radiograph from Patient with Noncardiogenic Pulmonary Edema

Treatment: Post-capillary PH -

Pulmonary Venous Hypertension

- Surgery to eliminate left-sided cardiac obstruction
- Heart transplantation for left ventricular failure
- Additional medical and/or surgical treatment as needed
- Specific re: left heart or pulmonary venous hypertension etiology
- PAH treatment
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

Experience and Reason

\qquad
"In Medicine one must pay attention not to plausible theorizing but to experience and reason together . . I agree that theorizing is to be approved, provided that it is based on
facts, and systematically makes its deductions from what is observed . . . But conclusions drawn from unaided reason can hardly be serviceable; only those drawn from observed fact."

Hippocrates (460-377 BC): Precepts
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

