Pituitary

February 11, 2008

Hypothalamic-Pituitary Axes

Hypothalamic Factors
Releasing/Inhibiting

Anterior Pituitary Hormones
ACTH, PRL, GH, LH, FSH, TSH

Circulating Hormones

Target Gland and Tissue Effects

Posterior Pituitary Hormones
ADH, oxytocin
The GH/IGF-I Axis

- **Somatostatin**
- **GHRH**
- **Hypothalamus**
- **PITUITARY**
- **GH**
- **IGF-I**
- **LIVER**
- **CIRCULATION**

Growth Hormone

- Synthesized in the anterior lobe of the pituitary gland in somatotroph cells

- ~75% of GH in the pituitary and in circulation is a 191 amino acid single chain peptide, with 2 intra-molecular disulfide bonds. Weight: 22kD

- Amount of GH secreted:
 - Women: 500 µg/m²/day
 - Men: 350 µg/m²/day
Pulsatile Pattern of GH Secretion in a Healthy Adult

GH (µg/L)

Sleep

0900 2100 0900

Clocktime

From: "Acromegaly" by Alan G. Harris, M.D.

GH Secretion: Primarily Regulation by two hypothalamic hormones

GHRH +

GHRH induces GH synthesis and secretion in somatotrophs

- SMS

Somatostatin Inhibitory of GH Secretion

Somatostatin: Decreases to allow GH secretory Bursts
Pharmacologic Agents Used to Stimulate GH Secretion

Stimulate hypothalamic GHRH or Inhibit Somatostatin

L-dopa
Clonidine

Hypoglycemia (Insulin)
Arginine
Pyridostigmine

GHRH +

SMS

GH

Other Physiological Regulators of GH Secretion

Sleep Exercise Stress Amino Acids Fasting

Glucose

GHRH

Hypothalamus

SMS

Pituitary

GH

Target Tissues

IGF-I

Metabolic & Growth Promoting Effects
Insulin-like growth factor I (IGF-I)

- 70 amino acid polypeptide
- Produced predominantly in the liver
- Endocrine and autocrine/paracrine actions
 - Mediates major anabolic and growth-promoting effects of GH
 - Insulin-like effect, independent of GH
 - Does not mediate the lipolytic effects of GH

Major Determinants of Circulating IGF-I Levels

- **Growth Hormone**
 Increases IGF-I production in liver, major source of circulating IGF-I
- **Nutritional Status**
- **Age**
- **Genetic Factors**
- **Binding proteins**
- **Increased levels in pregnancy and puberty**
GH Secretion & IGF-I Levels Across Lifespan

- GH secretion declines with age
- Serum IGF-I levels also decline with age.

GH & IGF-I Actions

- GHRH
- SMS
- Hypothalamus
- Anterior Pituitary
- GH
- Bone
- Fat
- Muscle
- Liver
- Target Tissues
- IGF-I
- Metabolic Effects
- Anabolism Growth

IGFBP-1
IGFBP-2
IGFBP-3
IGFBP-4
IGFBP-5
IGFBP-6
Disorders of GH Secretion

- **GH Excess**: GH overproduction by a GH Secreting pituitary tumor - ACROMEGALY

- **GH Deficiency**: Childhood onset, Adult onset

GH/IGF-I Axis

- Somatostatin(-)
- GHRH (+)
- GHRH (+) stimulates GH secretion
- GH stimulates IGF-I synthesis in the liver
- Local IGF-I synthesis in circulation

Acromegaly

- GH increases GH and IGF-I levels
- IGF-I synthesis in local tissues
Biochemical Diagnosis of Acromegaly

Growth Hormone

- Random GH Levels
- GH Suppression after Oral Glucose:
 - Failure of GH to Fall < 1 µg/L

Serum IGF-I Level:

- Elevated above age-adjusted normal range

Prevalence of Clinical Features at Diagnosis

- Acral enlargement and/or coarse features
- Sweating
- Menstrual Disorders
- Headache
- Arthritis
- Carpal tunnel syndrome
- Diabetes or impaired glucose intolerance
- Impaired potency and/or libido
- Hypertension
- Visual field defect
- Obstructive sleep apnea
- Galactorrhea
- Coronary artery disease

Current Therapies for Acromegaly

- **Primary therapy**
 - Transsphenoidal surgery
 - Medical therapy

- **Adjunctive therapy**
 - Medical therapy
 - Dopamine agonists
 - Somatostatin analogs
 - GH receptor antagonist
 - Radiotherapy (+ Interim medical therapy)
Role of Surgery for Acromegaly

First Line Therapy in Nearly All patients:

- Potential for cure
- Leads to immediate decline in GH level
- Reduces tumor size and relieves mass effect
- Surgical complication rate is low

Somatostatin Analogs (SA)
- Directly inhibit GH secretion

Dopamine Agonists (DA)
- Directly inhibit GH secretion

Growth Hormone Receptor (GHR) Antagonist (pegvisomant)
- Blocks the GH receptor, negating effects of GH in periphery
- Directly inhibits IGF-I secretion

Targets of the GH/IGF-I Pathway for Medical Therapy of GH Producing Pituitary Tumor

- Somatostatin
- GHRH
- Growth hormone-secreting tumor
- IGF-I
- Increased somatic growth & metabolic dysfunction
Somatostatin

Somatostatin-14

- Amino acids common to native hormone & analog.

Analogs: Clinical Use

- **Lanreotide**
 - Thr
 - Cys
 - Val
 - Lys

- **Octreotide**
 - D
 - Trp
 - D
 - Phe
 - Lys
 - Thr

Pegvisomant

- GH molecule that has been mutated to function as a receptor antagonist
- GH Receptors are blocked.
- GH does not fall, but GH actions are blocked.
- IGF-I levels fall and clinical symptoms of acromegaly improve

- IGF-I Levels Fall
Goals of Therapy

- Biochemical control
 - GH suppression
 - IGF-I normalization
- Relieve signs and symptoms
- Reduce tumor size & mass effect
- Preserve pituitary function
- Minimal side effects

Etiologies of Clinical Syndromes of Growth Hormone Deficiency

- Hypothalamic Disease: GHRH Deficiency
- Pituitary Disease: Failure to Secrete GH
- Failure to generate IGF-I peripherally
 - Deficiencies of GH or IGF-I receptors in liver; IGF-I not produced; GH resistance, GH not low.

Liver & Other Tissue

IGF-I
Etiologies of Adult Onset of GH Deficiency

<table>
<thead>
<tr>
<th>Cause</th>
<th>N=1034</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pituitary tumor</td>
<td></td>
<td>53.9</td>
</tr>
<tr>
<td>Craniopharyngioma</td>
<td></td>
<td>12.3</td>
</tr>
<tr>
<td>Idiopathic</td>
<td></td>
<td>10.2</td>
</tr>
<tr>
<td>CNS tumor</td>
<td></td>
<td>4.4</td>
</tr>
<tr>
<td>Empty sella syndrome</td>
<td></td>
<td>4.2</td>
</tr>
<tr>
<td>Sheehan’s syndrome</td>
<td></td>
<td>3.1</td>
</tr>
<tr>
<td>Head trauma</td>
<td></td>
<td>2.4</td>
</tr>
<tr>
<td>Hypophysitis</td>
<td></td>
<td>1.6</td>
</tr>
<tr>
<td>Surgery other than for pituitary treatment</td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>Granulomatous diseases</td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td>Irradiation other than for pituitary treatment</td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>4.0</td>
</tr>
</tbody>
</table>

Clinical Consequences of Adult Onset GH Deficiency

- Increased cholesterol and increased levels of some cardiovascular risk markers eg. CRP.
- Abnormal body composition; increased central body fat.
- Decreased bone density
- Decreased quality of life

Therapy of GH Deficiency:
- Requires daily subcutaneous injections of human growth hormone. (Some newer formulations may be longer acting)
- Effect in GH deficient adults; Modest improvements in the effects of GH deficiency listed above.
Regulation of Prolactin Secretion

Stimulated by:
- Sleep
- Food
- Stress
- Pregnancy
- Nursing
- Breast stimulation

Suppressed by:
- Dopamine

Under Tonic Inhibition

Hyperprolactinemia

- Defined as excess serum prolactin:
 - Prolactin >20 µg/L in men or >25 µg/L in women

- Most common endocrine disorder of the hypothalamic-pituitary axis

- Prevalence: 0.4% in unselected normal adult population
 - Many different etiologies
 - Prolactinomas are the most frequent cause of hyperprolactinemia
Pathological Causes of Hyperprolactinemia

Pituitary/Hypothalamic Disorders
- Prolactinoma
- Acromegaly
- Other sellar masses
- Infiltrative disorders
- Hypothalamic and pituitary stalk disease or damage

Other Causes
- Primary hypothyroidism
- Seizures
- Polycystic ovary disease
- Neurogenic causes (chest wall trauma or surgery, herpes zoster)
- Renal insufficiency
- Cirrhosis
- Medications

Pharmacologic Causes of Hyperprolactinemia

Antihypertensives
- Verapamil
- Methyldopa
- Reserpine

GI Medications
- Chlorpromazine
- Metoclopramide
- Domperidone
- H2 blockers?

Antipsychotics
- Phenothiazines
- Butyrophenones
- Atypicals

Antidepressants
- Tricyclics
- MAO inhibitors
- SSRIs

Other
- Cocaine
- Opiates
- Protease Inhibitors?
Clinical Manifestations of Hyperprolactinemia

Hyperprolactinemia: Suppresses gonadotropins - leads to varying degrees of gonadal dysfunction.

Women
- Oligo-amenorrhea
- Infertility
- Galactorrhea
- Estrogen deficiency
- Acne/hirsuitism
- Osteopenia

Men
- Decreased libido
- Erectile dysfunction
- Gynecomastia
- Galactorrhea
- Infertility
- Osteopenia

Treatment of Hyperprolactinemia

- **Dopamine agonist therapy** is primary treatment for almost all patients
- Surgery and radiation therapy occasionally used
- Careful follow-up without treatment is an option for patients if they
 - do not have a macroadenoma
 - are asymptomatic
 - have normal gonadal function
 - are not seeking fertility
Dopamine Agonists used to treat Hyperprolactinemia/Prolactinomas

- Bromocriptine
- Cabergoline

Hyperprolactinemia: Treatment Goals

- Restore gonadal function
 - Improvement in sexual dysfunction
 - Fertility
- Resolve galactorrhea (if bothersome)
- Reduce/stabilize tumor size
 - Reverse mass effects
 - Preserve/restore pituitary function
- Normalize PRL level
Pituitary Tumors

Nearly All Benign

Can be: Non-secreting

Hormone Secreting

- Prolactin
- Growth Hormone
- ACTH- Cushing’s
- TSH, LH, FSH

Cause Disease:

- Problems related to: Excess hormone
- Pressure of tumor on: optic nerves, other surrounding
- Or normal pituitary - pituitary insufficiency

Evaluation of the Patient for Pituitary Disease

- History and Physical examination
- Laboratory: Pituitary hormone overproduction and hypopituitarism
 - Prolactin
 - Free T4, TSH
 - Cortisol, ACTH
 - GH, IGF-I
 - LH, FSH, testosterone
 - Pregnancy test
- MRI
- Visual fields