Pituitary

March 8, 2010

Hypothalamic-Pituitary Axes

CAUSES OF PITUITARY DISEASE

Tumors and Other Mass Lesions

Pituitary Tumors (most common)

Hormone Secreting Non-hormone secreting Non-Pituitary Lesions Cell Rest Tumors Craniopharyngioma, Rathke's Cleft Cysts, Chordoma Meningioma Metastatic Tumors Lymphoma Granulomatous, Infectious and Inflammatory Sarcoid, Tuberculosis Abscess Lymphocytic Hypophysitis

Other causes

Vascular Lesions: Aneurysm Pituitary Apoplexy- pituitary hemorrhage Infarction of pituitary- Sheehan syndrome Head Trauma Genetic diseases - pit-1 mutation Empty sella syndrome

Hypothalamic Disease Mass lesions – eg. craniopharyngiomas, germ cell tumors Radiation - for CNS and nasopharyngeal malignancies Infiltrative lesions - sarcoidosis, Langerhans cell histiocytosis, tuberculosis

Pituitary Tumors

Nearly All Benign

Can be: Non-secreting Hormone Secreting Prolactin Growth Hormone ACTH- Cushing's TSH, LH, FSH

Cause Disease: Problems related to: Excess hormone

Pressure of tumor on: optic nerves, other surrounding

Or normal pituitary - pituitary insufficiency

MRI: Normal Pituitary Gland

Coronal

MRI: Pituitary Gland Microadenoma

Evaluation of the Patient for Pituitary Disease

- History and Physical examination
- Laboratory: Pituitary hormone overproduction and hypopituitarism
 - Prolactin
 - Free T4, TSH
 - Cortisol, ACTH
 - GH, IGF-I
 - LH, FSH, testosterone
 - Pregnancy test
- MRI
- Visual fields

The GH/IGF-I Axis

Pulsatile Pattern of GH Secretion in a Healthy Adult

GH Secretion: Primarily Regulation by two hypothalamic hormones

Growth Hormone Releasing Hormone Stimulatory of GH Secretion

- SMS

Somatostatin Inhibitory of GH Secretion

GHRH induces GH synthesis and secretion in somatotrophs GH

Somatostatin: Decreases to allow GH secretory Bursts

Pharmacologic Agents Used to Stimulate GH Secretion

Other Physiological Regulators of GH Secretion

Major Determinants of Circulating IGF-I Levels

Growth Hormone

Increases IGF-I production in liver, major source of circulating IGF-I

- Nutritional Status
- Age
- Genetic Factors
- Binding proteins
- Increased levels in pregnancy and puberty

GH Secretion & IGF-I Levels Across Lifespan

Prepubertal Pubertal Adult <35 yr Adult >35 yr

•GH secretion declines with age

• Serum IGF-I levels also decline with age.

GH & IGF-I Actions

Disorders of GH Secretion

• <u>GH Excess</u>:

GH overproduction by a GH Secreting pituitary tumor - ACROMEGALY

Childhood onset Adult onset

Prevalence of Clinical Features at Diagnosis

Clemmons DR, et al. J Clin Endocrinol Metab. 2003;88:4759-4767.

Clinical Features: Extremities

Tufting of the terminal phalanges

Enlarged hands

Enlarged Feet

Increased heel pad thickness

Clinical Features: Maxillofacial

Characteristic facies: enlarged nose, chin and mandible

Prognathism, TMJ

Macroglossia

Spreading of Teeth or Malocclusion

Gagel et al, N Engl J Med 1999;340(7):524

Biochemical Diagnosis of Acromegaly

Growth Hormone

_Random GH Levels

GH Suppression after Oral Glucose:

Failure of GH to Fall < $1 \mu g/L$

Serum IGF-I Level:

Elevated above age-adjusted normal range

Current Therapies for Acromegaly

- Primary therapy
 - Transsphenoidal surgery
 - Medical therapy
- Adjunctive therapy
 - Medical therapy
 - Dopamine agonists
 - Somatostatin analogs
 - GH receptor antagonist
 - Radiotherapy (+ Interim medical therapy)

Role of Surgery for Acromegaly

First Line Therapy in Nearly All patients:

- Potential for cure
- Leads to immediate decline in GH level
- Reduces tumor size and relieves mass effect
- Surgical complication rate is low

Targets of the GH/IGF-I Pathway for Medical Therapy of GH Producing Pituitary Tumor

native hormone & analog.

Pegvisomant

GH molecule that has been mutated to function as a receptor antagonist
GH Receptors are blocked.
GH does not fall, but GH actions are blocked.
IGF-I levels fall and clinical symptoms of acromegaly improve

IGF-I Levels Fall

GHR Signal Transduction Is Prevented

Goals of Therapy

- Biochemical control
 - GH suppression
 - IGF-I normalization
- Relieve signs and symptoms
- Reduce tumor size & mass effect
- Preserve pituitary function
- Minimal side effects

Etiologies of Clinical Syndromes of Growth Hormone Deficiency

Etiologies of Adult Onset of GH Deficiency

Cause	N=1034	Percent
Pituitary tumor		53.9
Craniopharyngioma		12.3
Idiopathic		10.2
CNS tumor		4.4
Empty sella syndrome		4.2
Sheehan's syndrome		3.1
Head trauma		2.4
Hypophysitis		1.6
Surgery other than for pituitary treatment		1.5
Granulomatous diseases		1.3
Irradiation other than for pituitary treatment		1.1
Other		4.0

Abs R, et al. *Clin Endocrinol (Oxf)* 1999; 50: 703-713.

Clinical Consequences of Adult Onset GH Deficiency

- Increased cholesterol and increased levels of some cardiovascular risk markers eg. CRP.
- Abnormal body composition; increased central body fat.
- Decreased bone density
- Decreased quality of life

Therapy of GH Deficiency:

- Requires daily subcutaneous injections of human growth hormone. (Some newer formulations may be longer acting)
- Effect in GH deficient adults; Modest improvements in the effects of GH deficiency listed above.

Regulation of Prolactin Secretion

Stimulated by:

- Sleep
- Food
- Stress
- Pregnancy
- Nursing
- Breast stimulation

Suppressed by:

• Dopamine

Under Tonic Inhibition

Hyperprolactinemia

- Defined as excess serum prolactin: Prolactin >20 µg/L in men or >25 µg/L in women
- Most common endocrine disorder of the hypothalamic-pituitary axis
- Prevalence: 0.4% in unselected normal adult population
 - Many different etiologies
 - Prolactinomas are the most frequent cause of hyperprolactinemia

Pathological Causes of Hyperprolactinemia

Pituitary/Hypothalamic

Disorders

- Prolactinoma
- Acromegaly
- Other sellar masses
- Infiltrative disorders
- Hypothalamic and pituitary stalk disease or damage

Other Causes

- Primary hypothyroidism
- Seizures
- Polycystic ovary disease
- Neurogenic causes (chest wall trauma or surgery, herpes zoster)
- Renal insufficiency
- Cirrhosis
- Medications

Pharmacologic Causes of Hyperprolactinemia

- Antihypertensives
 - Verapamil
 - Methydopa
 - Reserpine
- GI Medications
 - Chlorpromazine
 - Metoclopramide
 - Domperidone
 - H2 blockers?

- Antipsychotics
 - Phenothiazines
 - Butyrophenones
 - Atypicals
- Antidepressants
 - Tricyclics
 - MAO inhibitors
 - SSRIs
- Other
 - Cocaine
 - Opiates
 - Protease Inhibitors?

Clinical Manifestations of Hyperprolactinemia

Hyperprolactinemia: Suppresses gonadotropins - leads to varying degrees of gonadal dysfunction.

<u>Women</u>

- Oligo-amenorrhea
- Infertility
- Galactorrhea
- Estrogen deficiency
- Acne/hirsuitism
- Osteopenia

<u>Men</u>

- Decreased libido
- Erectile dysfunction
- Gynecomastia
- Galactorrhea
- Infertility
- Osteopenia

Treatment of Hyperprolactinemia

- Dopamine agonist therapy is primary treatment for almost all patients
- Surgery and radiation therapy occasionally used
- Careful follow-up without treatment is an option for patients if they
 - do not have a macroadenoma
 - are asymptomatic
 - have normal gonadal function
 - are not seeking fertility

Hyperprolactinemia: Treatment Goals

- Restore gonadal function
 - Improvement in sexual dysfunction
 - Fertility
- Resolve galactorrhea (if bothersome)
- Reduce/stabilize tumor size
 - Reverse mass effects
 - Preserve/restore pituitary function
- Normalize PRL level

Dopamine Agonists used to treat Hyperprolactinemia/Prolactinomas

- Bromocriptine
- Cabergoline

MRI Showing Tumor Reduction With Dopamine Agonist

Molitch ME. In: Melmed S, ed. The Pituitary. 1st ed. Boston: Blackwell Scientific Publications, Inc.; 1995:443-477.