Bilirubin and Jaundice

Pathways of Bilirubin Synthesis and Catabolism

Sources of bilirubin production in the rat

Labeling of RBC hemoglobin and fecal stercobilin

Reaction Catalyzed by Biliverdin Reductase
BILIRUBIN CONJUGATION IN MICROSONES INVOLVES TWO STEPS, MEDIATED BY ONE BILIRUBIN-UDPGA TRANSFERASE

UDPGA

UDPGA

UDPGA

UDPGA

UDPGA TRANSFERASE

Conjugation prevents internal H-bonding by the -COOH groups of Bilirubin.

UROBILINOGENS ARE FORMED BY DECONJUGATION AND REDUCTION OF BILIRUBINS BY INTESTINAL BACTERIA

CONJUGATED BILIRUBIN

UNCONJUGATED BILIRUBIN

A UROBILINOGEN

Deconjugation

2 GA

M = Methyl

E = Ethyl

V = Vinyl
FRACTIONAL DIAZO REACTION OF PLASMA

\[
\begin{align*}
\text{DIAZO REAGENT} & \quad \text{Fast} \\
\text{SO}_2\text{H} & \quad \text{CONJUGATED BILIRUBIN} \\
\text{N}^+ & \quad \text{DIRECT reaction} \\
\text{SO}_2\text{H} & \quad \text{UNCONJUGATED BILIRUBIN} \\
\text{N}^+ & \quad \text{INDIRECT reaction}
\end{align*}
\]

TOTAL DIAZO REACTION OF PLASMA

\[
\begin{align*}
\text{CONJUGATED BILIRUBIN} + & \quad \text{ACCELERATOR (ALCOHOL, CAFFEINE)} \\
\text{UNCONJUGATED BILIRUBIN} & \quad \text{TOTAL reaction} \\
\text{TOTAL – DIRECT = INDIRECT}
\end{align*}
\]
Phototherapy for neonatal jaundice

![Image of phototherapy for neonatal jaundice]

Treatment for Neonatal Jaundice

Prevention of kernicterus

![Graph showing prevention of kernicterus]

Effect of Sn-protoporphyrin (Sn-PP) and Co-protoporphyrin (Co-PP) when administered once at a dose of 50 μmol/kg body wt on hepatic heme oxygenase activity in the rat.

![Graph showing effect on hepatic heme oxygenase activity]

Effect of Sn-protoporphyrin (Sn-PP) (100 μmol/kg body wt) administered once at a dose of 50 μmol/kg body wt on hepatic heme oxygenase activity in the rat.

![Graph showing effect of Sn-PP on hepatic heme oxygenase activity]

Effect of Sn-PP (2 x 0.25 μmol/kg body wt) on the levels of serum bilirubin in a patient with primary biliary cirrhosis (PBC).

![Graph showing effect of Sn-PP on serum bilirubin levels]

Structure of the α and β isomers of bilirubin IX.

![Structure of bilirubin IX α and β]

Structure of the α and β isomers of bilirubin IX. In the IXβ isomer (and in the γ and δ isomers, not shown) the propionic acid groups are moved to positions other than those indicated on the central pyrrole rings B and C of bilirubin IXα.
Unconjugated Hyperbilirubinemia

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Crigler-Najjar Type I</th>
<th>Gilbert Syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma bilirubin</td>
<td>50-60 μM</td>
<td>50-85 μM (increased)</td>
</tr>
<tr>
<td>Plasma BSP retention at 45 min</td>
<td>Normal</td>
<td>Usually normal; elevated in a minority of cases</td>
</tr>
<tr>
<td>Hepatic bilirubin-UDPGT activity</td>
<td>Undetectable</td>
<td>30-50% of normal</td>
</tr>
<tr>
<td>Effect of Phenobarbital on plasma bilirubin</td>
<td>No effect</td>
<td>Reduction</td>
</tr>
<tr>
<td>Pigments in bile</td>
<td>Small amounts of unconjugated bilirubin</td>
<td>Increased proportion of monoglucuronide</td>
</tr>
<tr>
<td>Prevalence</td>
<td>Rare</td>
<td>2-7% of population</td>
</tr>
<tr>
<td>Prognosis</td>
<td>Benign</td>
<td>Rare</td>
</tr>
<tr>
<td>Animal Model</td>
<td>Gunn rat</td>
<td>Bolivian Squirrel Monkey</td>
</tr>
<tr>
<td>Mutation</td>
<td>UDPGT null</td>
<td>UDPGT promoter ACTA2TAA</td>
</tr>
</tbody>
</table>

Chronic conjugated hyperbilirubinemia

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Dubin-Johnson Syndrome</th>
<th>Rotor Syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance of liver</td>
<td>Grossly black</td>
<td>Normal</td>
</tr>
<tr>
<td>Histology of liver</td>
<td>black pigment; predominantly in centrlobular areas; otherwise normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Serum bilirubin</td>
<td>Elevated, usually between 2 and 5 mg%, occasionally as high as 20 mg%; predominantly direct-reacting</td>
<td>Elevated, usually between 2 and 5 mg%, occasionally as high as 20 mg%; predominantly direct-reacting</td>
</tr>
<tr>
<td>Routine liver function tests</td>
<td>Normal except for bilirubin</td>
<td>Normal except for bilirubin</td>
</tr>
<tr>
<td>45-min plasma BSP retention</td>
<td>Normal or elevated; secondary rise at 90 min</td>
<td>Elevated; no secondary rise at 90 min</td>
</tr>
<tr>
<td>Urinary coproporphyrin</td>
<td>Normal total >80% as coproporphyrin I</td>
<td>Elevated total; elevated proportion of coproporphyrin I but <80%</td>
</tr>
<tr>
<td>Mode of inheritance</td>
<td>Autosomal recessive</td>
<td>Autosomal recessive</td>
</tr>
<tr>
<td>Prevalence</td>
<td>Uncommon (1:1300 in Persian Jews)</td>
<td>Rare</td>
</tr>
<tr>
<td>Prognosis</td>
<td>Benign</td>
<td>Benign</td>
</tr>
<tr>
<td>Mutation</td>
<td>MRP2</td>
<td>MRP2</td>
</tr>
</tbody>
</table>

Defective Secretion of Conjugated Bilirubin from Liver Cells

- **Jaundice**
 - Unconjugated bilirubin
 - Conjugated bilirubin
 - Hepatocellular
 - Cholestatic
 - Hemolysis
 - Defect in Conjugation
 - Intrahepatic
 - Extrahepatic

- **Increased Bilirubin Production Beyond the Liver's Capacity to Conjugate It**

- **Defective Secretion of Conjugated Bilirubin from Liver Cells**

 - Blood
 - Cells
 - Canaliculus
 - Unconjugated bilirubin
 - Conjugated bilirubin
 - Endoplasmic reticulum
 - Conjugated bilirubin

- **Rotor Syndrome**
 - Jaundice
 - Unconjugated bilirubin
 - Conjugated bilirubin
 - Hepatocellular
 - Cholestatic
 - Hemolysis
 - Defect in Conjugation
 - Intrahepatic
 - Extrahepatic

- **Gilbert Syndrome**
 - Plasma bilirubin: 50-85 μM (increased)
 - Plasma BSP retention at 45 min: Usually normal; elevated in a minority of cases
 - Hepatic bilirubin-UDPGT activity: Undetectable
 - Effect of Phenobarbital on plasma bilirubin: No effect
 - Pigments in bile: Small amounts of unconjugated bilirubin
 - Prognosis: Benign
 - Animal Model: Gunn rat
 - Mutation: UDPGT null

- **Crigler-Najjar Type I**
 - Plasma bilirubin: 50-60 μM
 - Plasma BSP retention at 45 min: Normal
 - Hepatic bilirubin-UDPGT activity: Undetectable
 - Effect of Phenobarbital on plasma bilirubin: No effect
 - Pigments in bile: Small amounts of unconjugated bilirubin
 - Prognosis: Benign
 - Animal Model: Gunn rat
 - Mutation: UDPGT null, ACTA2TAA
Liver Function Tests

- Bilirubin
- PT (Prothrombin time)
- Glucose
- Cholesterol
- ALT (alanine aminotransferase)
- AST (aspartate aminotransferase)
- Alkaline phosphatase
- GGT (γ-glutamyltranspeptidase)

Imaging

- Ultrasound
- CT scan
- Liver-spleen scan
- Radionuclide biliary scan
- ERCP (endoscopic retrograde cholangiopancreatography)
- Transhepatic cholangiography

Bilirubin Metabolism

- Blood
 - Conjugated & Conjugated
 - Urine – Urobilinogen
 - Stool – Stercobilin

Jaundice

- Unconjugated bilirubin
- Conjugated bilirubin
- Hemolysis
- Defect in Conjugation
- Hepatocellular

Conversion of protoporphyrin IX to bilirubin IXα. Cleavage of the protoporphyrin ring occurs selectively at the α-methylene bridge. The bridge carbon atom is oxidized to carbon monooxide.
Biliverdin is produced by oxidation of heme and reduction of the resultant biliverdin

- **Heme Oxygenase**

- **Biliverdin IXα**

- **NADP⁺**

- **CO₂**

- **O₂**

- **NADPH**

Conjugation of Bilirubin

- **Dihydrobilirubin**

- **Two UDP-glucuronic acid**

- **Bilirubin diglucuronide**

- **Blood**

- **Liver**

- **Bile**

Blood

- Albumin-B

- **GSH-T**

- Glucuronyl transferase

- **UDPG**

- **UDP glucuronic acid**

- **Endoplasmic reticulum**

Liver

- BMG

- DMOAT

- MTR

Bile

- Canalicularis

- BMG

- DMOAT

- MTR

- Albumin-B

Phototherapy of Jaundice

Premature Newborns

Phototherapy

- **DAYS AFTER BIRTH**

- **CONCENTRATION (mg/dL)**

- **PHOTO RRT**

- **CONTROL**

- **PHOTO RRT**
Gna-Rats

-Absent bilirubin UDP-glucuronosyltransferase
-Inherited as autosomal recessive trait
-Normal liver function
-Prototype of Crigler-Najjar type I
-No bilirubinuria, small amount of bilirubin in bile
-Excrete bilirubin IXβ into bile
-Excrete unconjugated bilirubin into bile after phototherapy
-Defect corrected by hepatoma cells or kidney transplant