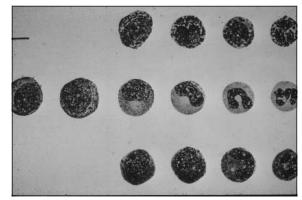

Usuallpherolyge
विदस्तानस्त
विधिक्षकारीक्षरिद्यी


Total WEG ≥60	Blasfi	1970	Mixel	Mtsi	Bimfil	स्रवृष्	(Aym)
विवयस्थित व्यवस्था । इस्टर्स्स विकास	00	Œ	00	R	(E)	32	E
शकारिक रिकारिकारिक	352	00	00	Œ	83	f(t)	5
CMI	P	83	ſΒ	П	2 (0)	837	R
	00	00	00	\odot	fl	ſI	983

Acute leukemias

• Major Categories:

ALL = acute lymphocytic, lymphoid or lymphoblastic leukemia

versus

ANLL = acute non-lymphocytic leukemia = acute myeloid leukemia (AML)
- includes granulocytic, erythroid, and megakaryocytic lineages

Acute Leukemia

- imbalance between proliferation and differentiation
- majority of cells not dividing
 therapeutic dilemma

Leukemias - evidence of damage to DNA

- majority have visible chromosome abnormality
- tumor-specific chromosomal translocations, e.g.,
 - t(15;17) acute promyelocytic leukemia
 - t(9;22) chronic myeloid leukemia
 - t(8;14) Burkitt's lymphoma/leukemia

Types of Genetic Damage (DNA mutations)

- rearrangements
- translocations
- point mutations
- deletions

Genetic damage in leukemias

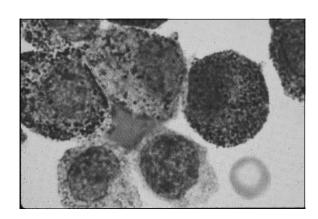
- Causes
 - radiation
 - carcinogens
 - » benzene
 - » chemotherapy
 - hereditary chromosome disorders
 - hereditary disorders of DNA repair
 - viruses (eg, HTLV-I)
- Proto-oncogenes → oncogenes
- · Inactivation of 'tumor suppressor genes'
- Multiple events

Proto-oncogenes

- Human genes homologous with genes in viruses which cause cancer in animals
 - e.g., abl is homologous with genetic material in the Abelson murine leukemia virus
- Protein product of proto-oncogenes may have an important normal function in humans:

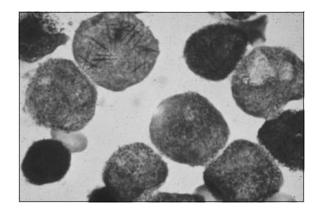
 - e.g., tyrosine kinase activity of abl
 e.g., transcriptional regulation by myc
- Conversion to oncogenes by mutational events $\rightarrow\!$ enhanced or disturbed function

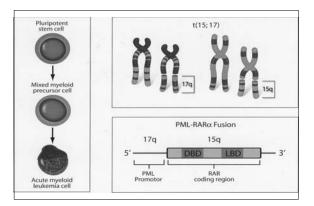
Conversion of proto-oncogene to oncogene


- · Possible mechanisms
 - Unaltered gene product (e.g., myc in Burkitt's)
 - Altered gene product
 - » usually a fusion protein (e.g., bcr-abl in CML)

Gene Products of Oncogenes

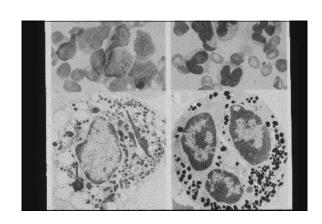
- · Growth factors
- · Receptors for growth factors
- · Molecules involved in signal transduction
- Proteins that bind DNA and regulate nuclear functions (e.g., transcription factors)


Oncogene Activation


mans Proposed out ton Disease medianism $\mathbb{C}(\mathbb{C}(12))$ some =}cell e:pression of lymphomas, Al∎∎ ගිනානුලේල්ගිතා (කල්ගිය (myd) efimerie signalling molecule (Deceb)) [(E)(FF4)] some ALL eede gemyeleeyde eede ලබ්කලාල ඔහාසල්|ලබ්ලා|සල්ලා (ලක්සලා) ((i Shi 74)

Acute Promyelocytic Leukemia

- about 7% of all ANLL
- malignant clone shows early differentiation
- cells often contain multiple Auer rods
- disseminated intravascular coagulation common
- t(15;17) almost always present
- · sensitivity to arsenical trioxide and retinoic acid

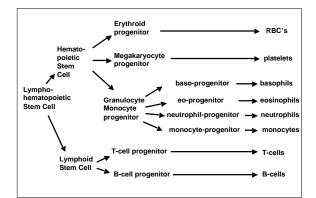


Acute Promyelocytic Leukemia t(15;17)

- retinoic acid receptor- $\!\alpha\!\!\!\!/$ (RAR- $\!\!\!\!/\!\!\!\!\alpha\!\!\!\!/$) gene on 17q in normal cells
- RAR- α gene product is a nuclear receptor protein acting as transcription enhancer in myeloid differentiation when bound to retinoic acid
- in t(15;17), part of RAR- α gene on 17q is translocated to 15q and fused to another gene, PML
- PML is normally a tumor suppressor gene which modulates transcriptional activation and promotes apoptosis
- the fusion gene product (pml-rara) of APL causes failure of promyelocytes to differentiate and blocks apoptosis

Retinoic acid induces remissions in APL

- marrow hypoplasia not mandatory
- malignant clone matures to PMN
- leukemic clone replaced by normal cells in marrow
- t(15;17) no longer readily detected
- · 'differentiating agent'
- relapse occurs, necessitating chemotherapy

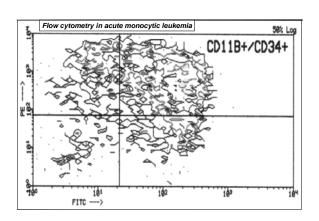

Tumor-suppressor genes

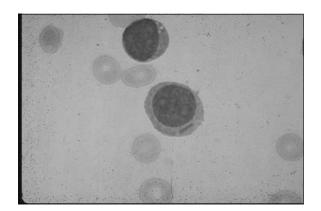
• inactivation of both alleles of gene allows tumor growth e.g., p53

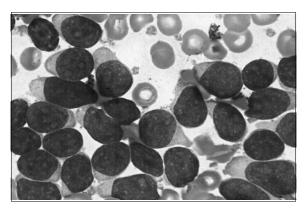
minor DNA damage - promotes repair major DNA damage - promotes apoptosis e.g., retinoblastoma gene modulates cell cycling

• ? deleted in therapy-related acute leukemia

How is Lineage & Stage Specificity Achieved?		
Acute non- llymphocyfle llen/confle	eltomallomen/Sev expenses all fine	വ്യൂത്യൂൺത്രം ഭയില് തി തഴിയ്യിന
modigativits	त्तरमारक्ष्युतिह _् तत्कारक्ष्युतिहर	റിക്ഷിലുന്നു സമക്ഷ്യദ് പ്രധാനമക്ഷ്യദ്
mfh w¥ty	ncettropfills; monocytes; RHOS; pjettelets	Drogenitor Dolette Dolette



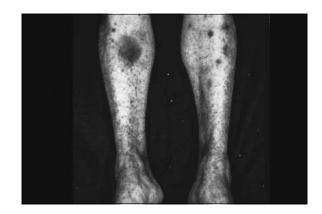

Lineage & Stage Specificity in ALL


Acute lymphocytic leukemia

- usually arises in early progenitor B or T cell
- B:T 4:1
- occasional mixed B and T cell phenotype, suggesting malignant event at earlier multipotent lymphoid progenitor cell

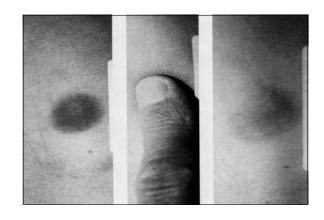
देखारिक रह	AILIL	ANIDIO
വയ ഉള്ളദിബബ	dilden	នវិបិហិន
myydogo oxidkse sikim		::
Augunofik		::
Reminal Reminal	::	
જૂની કામ કેટલ પ્ર મુક્ત	BoxA	mydddd
୍ରିପ୍ରତ୍ୟୁ ନିର୍ଦ୍ଧମ ସେମ୍ବର୍ଣ୍ଣ ପ୍ରତ୍ୟୁ ସେଲ୍ଲୋମ୍ବର୍ଣ୍ଣ	::	

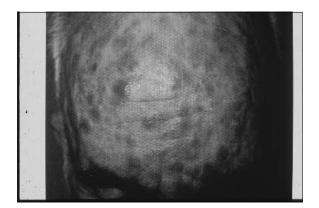
Acute Leukemia

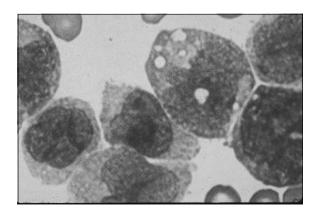

Consequences =venti

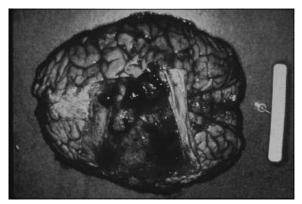
Merrow Idflure ්වුණිවණි සැපොස් සැපොස්

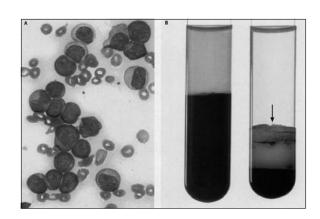
infæණිලා weathress, fæfigue විශෝධාල

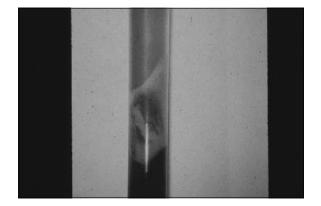

lily<u>p</u>ar Witemila ලෙසුන් සෙව් සෙව් වැට් වැට seute renal faflure

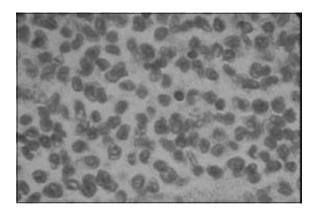

්ල්ක්ත්ත්ය න්වාහාගන් ප්රණල DIG Desding


Acute Leukemia

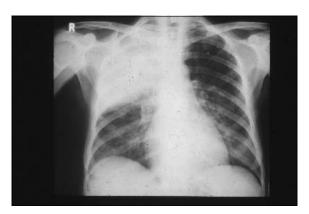

Organ infiltration marrow involvement bone pain enlarged liver, spleen, nodes hypertrophied gums meningeal infiltration headache, cranial nn. palsies

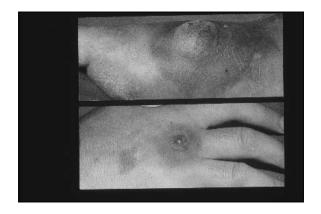





Acute Leukemia

- blast leukocytosis
- leukostasis in small blood vessels: tachypnea dyspnea tinnitus lethargy stupor





Acute Leukemia - treatment

- intensive combination therapy
- chemotherapy continued beyond remission
- central nervous system prophylaxis (ALL)
- bone marrow transplantation in selected patients
- therapy is dangerous
- supportive measures
 allopurinol
 rbc and platelet transfusions
 antimicrobials

	A	ANDI		
	elfilliken	នរីបែបនៃន	affolds:	
જાળાનું દિશ્લ ભાગામાં કરોઇના	9101%	15%	65%	
me āl ian sau wik ali	G: ye	មេសាខ	TER MASS	
5 yn Otsease Nege swydydd	7.0)9%	20±5%	F(I)=2(I)22	