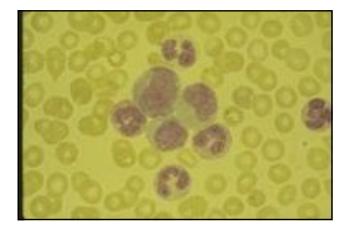
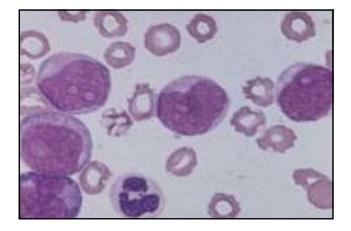
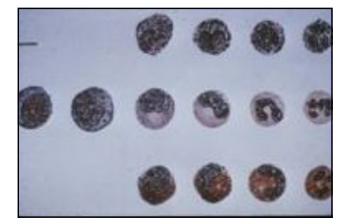

<u>Disease</u>	<u>Usual phenotype</u>
acute leukemia	precursor
chronic leukemia lymphoma myeloma	differentiated


<u>Total WBC</u> ≥ <u>60</u>	<u>Blast</u>	<u>Pro</u>	MyeL	<u>Meta</u>	Band_	Seg_	Lymph_
leukemoid reaction	0	0	0	2	13	82	3
acute leukemia	82	0	0	0	3	10	5
CML	2	8	13	18	20	37	2
CLL	0	0	0	0	1	1	98





Acute leukemias

Major Categories:

ALL = acute lymphocytic, lymphoid or lymphoblastic leukemia

versus

Acute Leukemia

- imbalance between proliferation and differentiation
- majority of cells not dividing
 therapeutic dilemma

Leukemias - evidence of damage to DNA

- majority have visible chromosome abnormality
- tumor-specific chromosomal translocations, e.g.,
 - t(15;17) acute promyelocytic leukemia
 - t(9;22) chronic myeloid leukemia
 - t(8;14) Burkitt's lymphoma/leukemia

Types of Genetic Damage (DNA mutations)

- rearrangements
- translocations
- point mutations
- deletions

Multiple events

Proto-oncogenes

 Human genes homologous with genes in viruses which cause cancer in animals - e.g., abl is homologous with genetic material in the Abelson murine leukemia virus

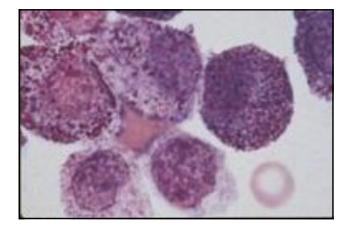
Protein product of proto-oncogenes may have an important normal function in humans: – e.g., tyrosine kinase activity of *abl* – e.g., transcriptional regulation by *myc*

- Conversion to oncogenes by mutational events \rightarrow enhanced or disturbed function

Conversion of proto-oncogene to oncogene

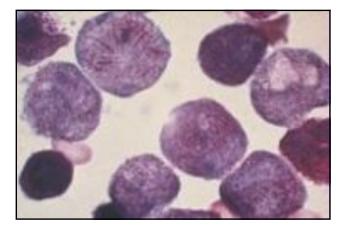
- Possible mechanisms
 - Unaltered gene product (e.g., *myc* in Burkitt's)
 - Altered gene product
 - » usually a fusion protein (e.g., bcr-abl in CML)

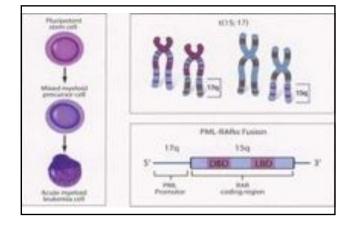
Gene Products of Oncogenes


- Growth factors
- Receptors for growth factors
- Molecules involved in signal transduction
- Proteins that bind DNA and regulate nuclear functions (e.g., transcription factors)

Oncogene Activation

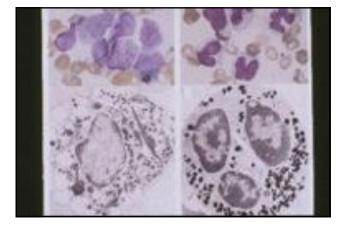
I rans- location	Disease	Proposed mechanism
t(8;14)	some B-cell lymphomas, ALL	↑ expression transcription (<i>myc</i>)
t(9;22)	CML, some ALL	chimeric molecule (<i>bcr -abl</i>)
t(15;17)	acute promyelocytic leukemia	chimeric transcription (<i>pml-rar α</i>




factor

Acute Promyelocytic Leukemia

- about 7% of all ANLL
- malignant clone shows early differentiation
- cells often contain multiple Auer rods
- disseminated intravascular coagulation common
- t(15;17) almost always present
- sensitivity to arsenical trioxide and retinoic acid



Acute Promyelocytic Leukemia t(15;17)

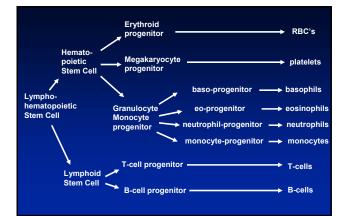
- + retinoic acid receptor- α (RAR- α) gene on 17q in normal cells
- RAR-α gene product is a nuclear receptor protein acting as transcription enhancer in myeloid differentiation when bound to retinoic acid
- in t(15:17), part of RAR-α gene on 17q is translocated to 15q and fused to another gene, PML
- PML is normally a tumor suppressor gene which modulates transcriptional activation and promotes apoptosis
- the fusion gene product (*pml-rara*) of APL causes failure of promyelocytes
 to differentiate and blocks apoptosis

Retinoic acid induces remissions in APL

- marrow hypoplasia not mandatory
- malignant clone matures to PMN
- leukemic clone replaced by normal cells in marrow
- t(15;17) no longer readily detected
- · 'differentiating agent'
- relapse occurs, necessitating chemotherapy

Tumor-suppressor genes

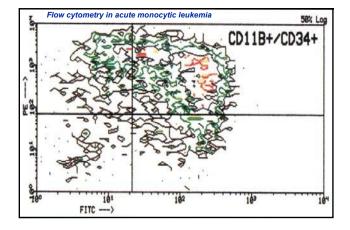
- inactivation of both alleles of gene allows tumor growth e.g., p53
 - minor DNA damage promotes repair


major DNA damage - promotes apoptosis

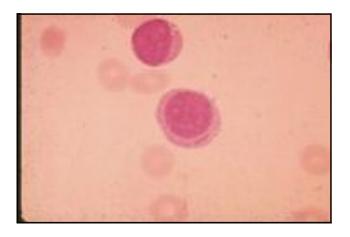
- e.g., retinoblastoma gene
 - modulates cell cycling
- · ? deleted in therapy-related acute leukemia

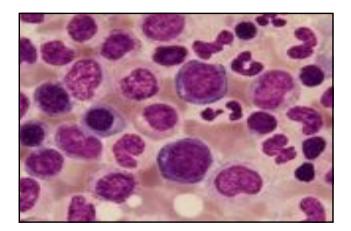
How is Lineage & Stage Specificity Achieved?

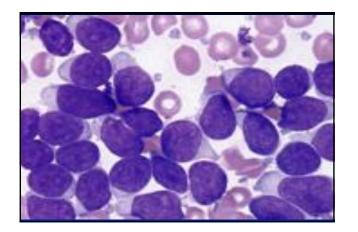
Acute non- lymphocytic <u>leukemia</u>	clonal marker <u>expressed in:</u>	progenitor cell of origin
most patients	neutrophils, monocytes	granulocyte - monocyte progenitor
minority	neutrophils, monocytes, RBC's, platelets	multipotent hemato- poietic progenitor


Lineage & Stage Specificity in ALL

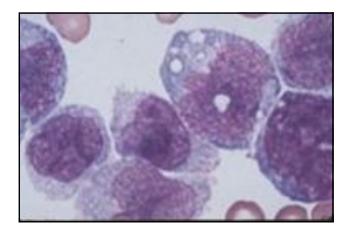
Acute lymphocytic leukemia


- usually arises in early progenitor B or T cell
- B:T 4:1
- occasional mixed B and T cell phenotype, suggesting malignant event at earlier multipotent lymphoid progenitor cell

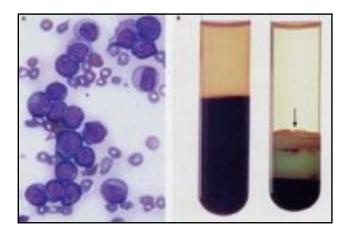

<u>Feature</u>	<u>ALL</u>	ANLL
usual age group	children	adults
myeloperoxidase stain		+
Auer rods		+
terminal transferase (TdT)	+	
cell surface Ag's	B or T	myeloid
Ig or T cell receptor gene rearrangement	+	



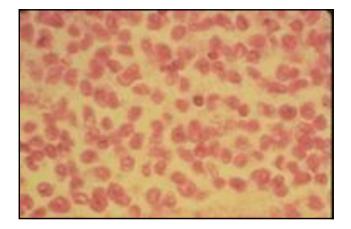
	Acute Leu	kemia
<u>Event</u>	Consequences	
Marrow failure	neutropenia anemia ↓ platelets	infection weakness, fatigue bleeding
Hyper- uricemia	tubular damage	acute renal failure
DIC	↓ platelets abnormal clotting	bleeding

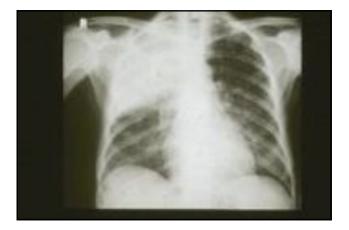

Acute Leukemia

Organ infiltration marrow involvement bone pain enlarged liver, spleen, nodes hypertrophied gums meningeal infiltration headache, cranial nn. palsies



Acute Leukemia


- blast leukocytosis
- leukostasis in small blood vessels: tachypnea dyspnea tinnitus lethargy stupor


Acute Leukemia - treatment

- intensive combination therapy
- chemotherapy continued beyond remission
- central nervous system prophylaxis (ALL)
- bone marrow transplantation in selected patients • therapy is dangerous
- supportive measures

 - allopurinol
 rbc and platelet transfusions
 antimicrobials

Acute Leukemia - results of treatment

	ALL		ANLL
	<u>children</u>	<u>adults</u>	<u>adults</u>
complete remission	90%	75%	65%
median survival	6+ yrs	1-2 yrs	1-2 yrs
5 yr disease- free survival	70%	20-45%	10-20%