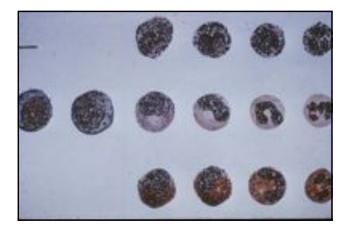


Disease Usual phenotype


acute leukemia precursor

chronic leukemia differentiated low grade lymphoma myeloma

<u>Total WBC</u> ≥ <u>60</u>	<u>Blast</u>	<u>Pro</u>	<u>Myel</u>	<u>Meta</u>	Band	<u>Seg</u>	<u>Lymph</u>
leukemoid reaction	0	0	0	2	13	82	3
acute leukemia	82	0	0	0	3	10	5
CML	2	8	13	18	20	37	2
CLL	0	0	0	0	1	1	98

Chronic myeloid leukemia

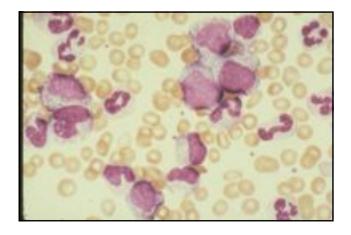
Chronic phase

increased pool of clonal precursors committed to become myeloid cells

most of the clonal precursors differentiate into mature cells

Leukemias - evidence of damage to DNA

- majority have visible chromosomal abnormality
- tumor-specific chromosomal translocations, e.g.,
 - t(15;17) acute promyelocytic leukemia
 - t(8;14) Burkitt's lymphoma/leukemia
 - t(9;22) chronic myeloid leukemia (and ALL)

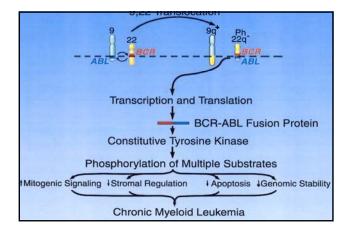

Conversion of proto-oncogene to oncogene

- · Possible mechanisms
 - -Unaltered gene product (e.g., *myc* in Burkitt's)
 - -Altered gene product
 » usually a fusion protein (e.g., bcr-abl in CML)

CML - chronic phase

- weakness, weight loss, purpura
- thrombocytosis
- anemia normal MCV
- splenomegaly
- priapism
- median duration 3-4 yrs

-	
•	
-	

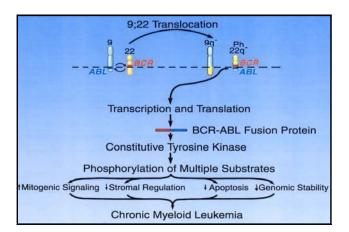


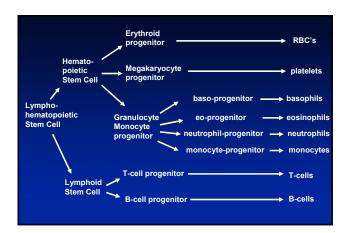
CML - chronic phase

- WBC increased
- Entire granulocytic spectrum on blood film
- Marrow hyperplasia
 - expanded myeloid series
 - eo and basophil precursors
 - megakaryocytes
- Low neutrophil alkaline phosphatase
- Ph chromosome [t(9;22)] present

Ph chromosome: t(9;22)

- reciprocal translocation between long arms of chromosomes 9 and 22
- Ph-negative CML: 9;22 translocation present but not visible
- ABL sequences from 9 translocated into BCR gene on 22 \rightarrow FUSION GENE

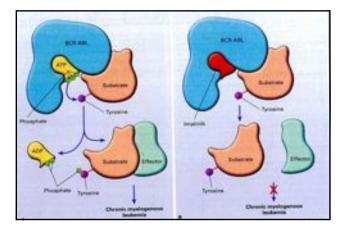

Introduction of BCR-ABL gene into mice


- trans-genic model
- bcr-abl product expressed
- animals develop CML and/or ALL

	molecul t weight	yrosi kė na: <u>activ</u> ity
normal ABL chromosom	145,000	weak
fusion gene chromosom	210,000	strong

bcr-abl protein differs from abl protein

- · cytoplasmic location
- transforms cells in vitro
- constitutive (continuous) increased tyrosine kinase activity
- new substrates and binding proteins
- ras is activated
- bcr component contributes to transforming activity


Chronic myeloid leukemia

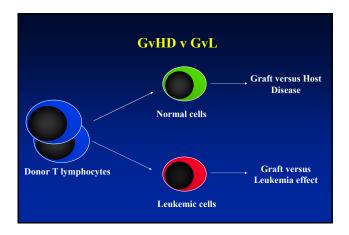
Ph chromosome present in precursors of:

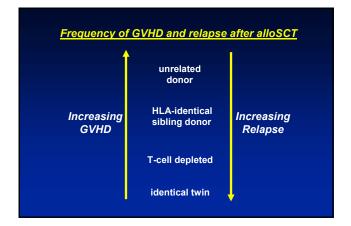
- granulocytes
- monocytes/macrophages
- basophils
- eosinophils
- erythrocytes
- platelets
- some B lymphocytes

Treatment of CML - chronic phase

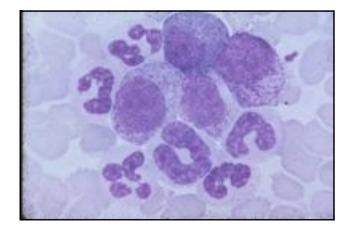
- hydroxyurea
- interferon- $\alpha \rightarrow$ 10-20% become Ph-negative
- survival better with hydroxyurea or interferon
- imatinib (Gleevec) targets ABL, potent, low toxicity
- allogeneic transplantation potentially curative

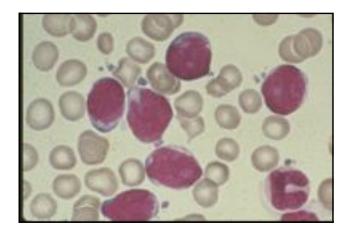
Marrow and Blood Stem Cell Transplantation				
	Autologous (autograft)	Allogeneic (allograft)		
Source of cells	Patient	Normal donor		
Myeloablative conditioning	Yes	Usually		
Transplant-related mortality	2-4%	10-30%		
Graft-vs-host disease	No	Yes		
Graft-vs-malignancy	No	Yes		
Greatest curative potential	Lymphoma	Inherited disease, CML		





CML - allogeneic transplantation


- may result in cure
- 10-25% transplant-related mortality
- age, donor limitations
- mechanisms of cure
 - high dose chemoradiotherapy
 - graft vs leukemia



Evidence for an immunologically mediated GVL effect

- Inverse correlation between GVHD and relapse
- In patients whose CML relapses after alloSCT, transfusion of lymphocytes from stem cell donor without additional chemoradiotherapy often induces a complete remission

CML in blastic transformation

- unstable disease weight loss, fever, sweats, bone pain
- worsening splenomegaly anemia platelet counts blast and promyelocyte counts basophilia and eosinophilia
- resistance to therapy'blastic crisis' develops in most
- · death in weeks or months

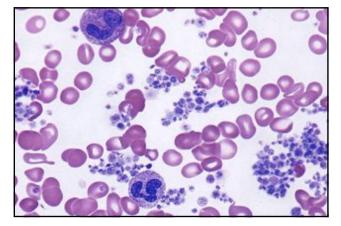
CML in blastic transformation

- Blasts of variable phenotype myeloid lymphoid (early B cell) megakaryocytic erythroid
- 'Clonal evolution'
 Ph chromosome with additional mutations (e.g., double Ph, trisomy 8, p53 alteration)

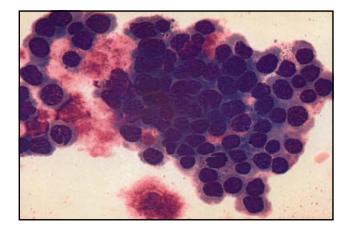
Ph-positive ALL

- 30-40% of adult ALL
- poor prognosis
- some have same fusion gene as in CML
- different fusion gene in others
 - -breakpoints more 5' in BCR
 - -gene product 190,000 daltons
 - -even stronger tyrosine kinase activity

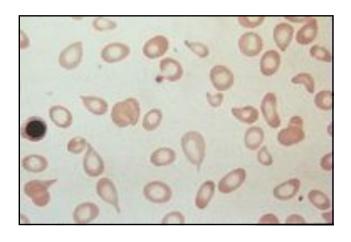
CML as a model of human malignancy

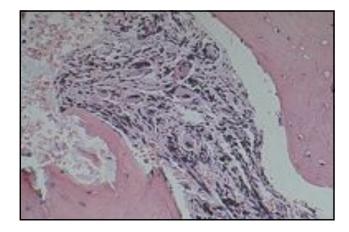

- origin in a stem cell
- tumor cell phenotype is differentiated (variably)
- clonal
- proliferative advantage
- genetic instability
 - -tendency to become less differentiated

Chronic myeloproliferative disorders

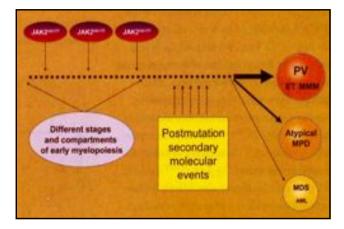

- chronic myeloid leukemia
- myelofibrosis with myeloid metaplasia
- polycythemia vera
- essential thrombocythemia

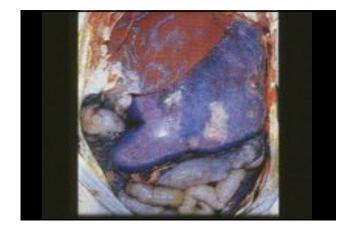
CML, myeloid metaplasia, P vera, essential thrombocythemia


- clonal
- arising in stem cells, with involvement of several cell lines
- JAK2 mutation common
- leukocytosis, thrombocytosis and platelet dysfunction
- splenomegaly
- tendency to convert to acute leukemia



-	
_	
_	





Myelofibrosis with Myeloid Metaplasia

- WBC increased, normal, or decreased
- Differential similar to CML
- anisopoikilocytosis
- tear-drop RBC's
- nucleated RBC's
- fibrosis of marrow
 - fibroblasts not part of clone

	·		