HEMOSTASIS/THROMBOSIS III

Regulation of Coagulation/
Disseminated Intravascular Coagulation

REGULATION OF COAGULATION

Introduction

• Coagulation necessary for maintenance of vascular integrity
• Enough fibrinogen to clot all vessels
• What controls clotting process?
COAGULATION CASCADE

Tissue Factor Pathway Inhibitor (TFPI)
- Complexes with Factors VIIa/TF/Xa; inactivates Xa

Antithrombin III/Heparin Cofactor II/Heparin
- Binds and Inactivates Enzymes

Protein C/Protein S/Thrombomodulin
- Cleaves & Inactivates Cofactors (Va & VIIIa)

Plasminogen - 3º hemostasis
- Cleaves Fibrin
COAGULATION CASCADE

COAGULATION INHIBITORS

- Tissue Factor Pathway Inhibitor (TFPI)
 - Complexes with Factors VIIa/TF/Xa; inactivates Xa
- Antithrombin III/Heparin Cofactor II/Heparin
 - Binds and Inactivates Enzymes
- Protein C/Protein S/Thrombomodulin
 - Cleaves & Inactivates Cofactors (Va & VIIIa)
- Plasminogen - 3º hemostasis
 - Cleaves Fibrin
ANTITHROMBIN III – Mechanism of Action

COAGULATION INHIBITORS

- Tissue Factor Pathway Inhibitor (TFPI)
 - Complexes with Factors VIIa/TF/Xa; inactivates Xa
- Antithrombin III/Heparin Cofactor II/Heparin
 - Binds and Inactivates Enzymes
- Protein C/Protein S/Thrombomodulin
 - Cleaves & Inactivates Cofactors (Va & VIIIa)
- Plasminogen - 3º hemostasis
 - Cleaves Fibrin
PROTEIN C/PROTEIN S – Mechanism of Action

COAGULATION INHIBITORS

- Tissue Factor Pathway Inhibitor (TFPI)
 - Complexes with Factors VIIa/TF/Xa; inactivates Xa
- Antithrombin III/Heparin Cofactor II/Heparin
 - Binds and Inactivates Enzymes
- Protein C/Protein S,Thrombomodulin
 - Cleaves & Inactivates Cofactors (Va & VIIIa)
- Plasminogen - 3rd hemostasis
 - Cleaves Fibrin
ANTICOAGULANT PROTEIN DEFICIENCY

Disease entities

- **Heterozygous Protein Deficiency**
 - Increased Venous Thrombosis
 - Occasional Increased Arterial Thrombosis
- **Homozygous Protein Deficiency**
 - Neonatal Purpura Fulminans
 - Fibrinogenolysis
 - Chronic DIC

ANTICOAGULANT PROTEIN DEFICIENCY

- **Dominant**
 - Increased Venous Thrombosis
 - Young Age of Thrombosis
 - No Predisposing Factors to Thrombosis
 - Increased Thrombin Generation
 - Positive Family History
- **Recessive**
 - No history of thrombosis
 - No family history
 - Neonatal Purpura Fulminans in offspring
 - Increased Thrombin Generation
ACTIVATED PROTEIN C RESISTANCE

• 1st described by Dahlback, 1994
• Hallmark: Failure of activated Protein C to prolong aPTT
• First noted in screening of plasma samples of patients with increased clotting
• Functional defect described before protein defect noted

ACTIVATED PROTEIN C RESISTANCE

• Bertina et al described genetic defect
• Mutation of Arg 506 ▶ Gln
• Named Factor V Leiden
• Found in > 98% of patients with APC Resistance
ACTIVATED PROTEIN C RESISTANCE

- Extremely common (5-20% of Caucasian population with mutation)
- Increases risk of venous thromboembolism (VTE) c. 4x in heterozygous form, more in homozygous
- Can exist in combination with other defects (protein C, protein S, ATIII, plasminogen)
- In combination, has synergistic effect on other anticoagulant protein deficiencies

PROTEIN C - MECHANISM OF ACTION

FACTOR Va INACTIVATION

\[\text{Factor Va} \xrightarrow{\text{APC}} \text{iFVa} \]
PROTEIN C - MECHANISM OF ACTION

FACTOR VIIIa INACTIVATION

APC

Factor VIIIa → iFVIIIa

Pro S
PL
Factor V

HYPERCOAGULABLE STATES

Prothrombin G20210 → A

- First described by Poort et al, 11/96
- Mutation in 3’ non-coding sequence of prothrombin gene
- Northern European mutation
- Found in 1-3% of persons of Northern European descent
HYPERCOAGULABLE STATES

Prothrombin G20210 ▶ A

- Increased prothrombin synthesis seen (> 115% of normal)
- Primary risk is in pregnancy-associated thrombosis & venous thromboembolic disease
- ??? Increased risk of stroke
- Mechanism of increased thrombosis unknown

HYPERCOAGULABLE STATES

Hyperhomocysteinemia

- Inborn error of metabolism
- Leads to buildup of homocysteine via several pathways
- Homozygous form associated with mental retardation, microcephaly, nephrolithiasis, seizure disorder, accelerated atherosclerosis, marked increase in thromboembolic disease
- Heterozygous form assoc. with mildly increased thromboembolic disease but not other problems
HYPERCOAGULABLE STATES
Hyperhomocysteinemia

Homocysteine + Serine \(\xrightarrow{CBS}\) Cystathione \(\xrightarrow{CBS}\) Cysteine

Homocysteine \(\xrightarrow{MTHFR}\) Methionine

HYPERCOAGULABLE STATES
Hyperhomocysteinemia - Causes

- Vitamin B\(_{12}\) deficiency
- Folic acid deficiency
- Vitamin B\(_6\) deficiency
- Cystathione synthase deficiency (classic form)
- Methyl tetrahydrofolate reductase deficiency (most common by far)
HYPERCOAGULABLE STATES

Hyperhomocysteinemia - Diagnosis

- Fasting homocysteine levels; considerable variability depending on assay
- Methionine loading if clinical suspicion high, but can precipitate thrombosis
- Methyl tetrahydrofolate reductase mutation (MTHFR C677 ▶ T) - Only relevant if homozygous

HYPERCOAGULABLE STATES

Acquired

- Inflammatory Diseases
- Nephrotic Syndrome
- Anticardiolipin Syndrome
- Malignancy
- Immobilization
- TTP
- DIC
- Oral Contraceptive Therapy
- Prosthetic Valves
- PNH
- Myeloproliferative diseases
- Atherosclerosis
- Surgery
- Diabetes mellitus
ACQUIRED HYPERCOAGULABLE STATES

Mechanisms

- C4b Binding Protein - Acute Phase Reactant
 - Increases in inflammatory diseases
 - Binds to Protein S
 - Bound Protein S inactive as cofactor
- Inflammation → Increased IL-1 & TNF
 - Both downregulate thrombomodulin
 - Thrombin becomes procoagulant instead of anticoagulant protein

NEPHROTIC SYNDROME

- Loss of glomerular filtration & reabsorption capability
- Leads to excretion of large amounts of protein in the urine, including
 - Antithrombin III (MW 65,000)
 - Protein S (MW 70,000)
 - Protein C (MW 56,000)
NEPHROTIC SYNDROME (2)

- C4b Binding Protein has MW c. 250,000, & is markedly elevated in nephrotic syndrome
- Therefore, any protein S left in the circulation is bound to C4b Binding Protein & is inactive as an anticoagulant

ANTICARDIOLIPIN ANTIBODY

* Lupus Anticoagulant

- Not necessarily associated with lupus (< 50%)
- Not associated with bleeding except in rare circumstances
- Associated with thrombosis - arterial & venous
- Associated with false (+) RPR
- Associated with recurrent spontaneous abortions
- Mechanism of thrombotic tendency unknown
LUPUS ANTICOAGULANT

• Caused by antiphospholipid antibodies that interfere with clotting process in vitro but not in vivo
• Dilute phospholipid so level of phospholipid becomes rate-limiting
• Many add confirmatory study of either aPTT with platelets as PL source or orthogonal PL as PL source

ANTIPHOSPHOLIPID ANTIBODY Assay

• Usually antigenic as opposed to functional assay
• True antigen is source of controversy- ? if phospholipid is true antigen or if associated protein is true antigen
• ? Pathogenicity of what is being measured
• Impossible to standardize assay even batch-to-batch of reagents
DIC

- Acute
 - Shock
 - Sepsis
 - Allergic reactions
 - Mismatched transfusion
 - Obstetrical problems
 - Trauma
 - Burns
 - Extracorporeal circulation
 - Acidosis
 - Purpura fulminans

- Subacute/Chronic
 - Acute leukemia
 - Carcinomas
 - Hemangiomata
 - Aortic aneurysms
 - ??? liver disease

ACUTE DIC

- Almost always secondary
- Consumptive coagulopathy
- Decreases in both coagulants & anticoagulants
- Severity may relate to levels of anticoagulants
DIC

Plasminogen Activation

F XII

F XIIa

Prekallikrein

Kallikrein

Urokinase

TPA

Plasminogen

Plasmin

Fibrinogen SPLIT PRODUCTS

Fibrinogen, 340,000

Fragment X, 250,000

Fragment D, 90,000

Fragment Y, 150,000

Fragment E, 50,000

Fragment D, 90,000
DEFIBRINATION

Mechanisms

- Release of Tissue Procoagulants
 - Tumor
 - Fetal/Placental/Amniotic
 - Prostatic
 - Pancreatic
 - WBC
 - RBC
 - Shock

- Damage to Vascular Tree
 - Septicemia
 - Aortic aneurysm
 - Hemangioma
 - Tumor emboli
 - ? Shock

- Decreased Clearance
 - Liver disease
 - ? Shock

DIC

Testing (Acute)

<table>
<thead>
<tr>
<th>Test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prothrombin Time</td>
<td>Slightly to grossly prolonged</td>
</tr>
<tr>
<td>aPTT</td>
<td>Variable</td>
</tr>
<tr>
<td>Fibrinogen</td>
<td>Usually low</td>
</tr>
<tr>
<td>Thrombin time</td>
<td>Usually prolonged</td>
</tr>
<tr>
<td>Factor levels</td>
<td>Variable</td>
</tr>
<tr>
<td>Platelet Count</td>
<td>Usually low</td>
</tr>
<tr>
<td>RBC fragmentation</td>
<td>Sometimes present</td>
</tr>
<tr>
<td>Fibrin split products</td>
<td>Usually present</td>
</tr>
</tbody>
</table>
DIC

Therapy

- Depends on primary manifestation
 - Thrombosis - Anticoagulant therapy
 - Bleeding - Replacement therapy
- Primary treatment
 - TREAT UNDERLYING DISEASE
- Replacement
 - Cryoprecipitate - Fibrinogen
 - Fresh frozen plasma - Other factors
 - Platelets
- Heparin
 - Rarely indicated

LIVER DISEASE

- Factor deficiencies - 2° Decreased synthesis
- Abnormal fibrinogen
 - Excess sialic acid
 - Prolonged thrombin time
- Low Grade DIC - Difficult Dx to make
- Increased fibrinolysis
 - Plasminogen activator inhibitor
 - α-2 antiplasmin
 - Tissue plasminogen activator