Common Features of Herpesviruses

- Morphology
- Basic mode of replication
- Primary infection followed by latency
- Ubiquitous
- Ability to cause recurrent infections (reactivation of latent virus), reinfecions (with a new virus), persistent infections (chronic low grade virus multiplication) immortalizing infections (EBV only)

8 Human Herpesviruses, 3 categories

- Alpha: short reproductive cycle, variable host range, latent in sensory neurons
 - Herpes simplex virus (HSV 1, 2)
 - Varicella-zoster virus (VZV)
- Beta: long reproductive cycle, narrow host range, latent in lymphoid cells & others (salivary glands, kidney)
 - Cytomegalovirus (CMV)
 - HHV6, HHV 7
- Gamma: narrow host range; latent in lymphoid cells, associated with tumors
 - Epstein Barr Virus (EBV)
 - Kaposi Sarcoma Virus (KSH, HHV8)

Human Herpesviruses

- Replication (lytic infection) occurs in a cascade
 - Latency occurs when the cascade is interrupted
- Transcription of viral genome and protein synthesis (cascade of gene expression), essential and luxury
 - 1. immediate early (IE): regulation of gene expression, DNA binding
 - 2. early (E): more transcription factors, enzymes, DNA polymerase
 - 3. late (L): structural proteins
- Encode targets for antiviral therapy
 - Thymidine kinase (TK), DNA polymerase

Human Herpesvirus (VZV)

- phospholipid envelope, tegument, icosahedral capsid, DNA core

VZV is typical herpesvirus

VZV has a phospholipid envelope.
- Contains ggs, eg: gB, gC, gE, gH/gL, gD, gP
- Tegument: Contains immediate early and early proteins, eg: ORFps 4, 10, 21, 62, 63
- Nucleocapsid: ORFp40
- DNA core

Varicella-zoster virus

- The smallest of the herpesviruses
 - 125 base pairs
 - 70 Open reading frames (ORFs)
- Receptors: heparan sulfate, mannose-6 phosphate receptor
Steps in the assembly and intracellular transport of VZV

VZV receives its final envelope in the TGN

Herpes simplex virus (HSV) Infections (alpha)
- Cellular receptors for gD are heparan sulfate, HveA-C, Nectin-1, 2
 - Hves are member of the immunoglobulin protein and TNF families
- Glycoproteins B, D, H, L promote attachment to cells and viral fusion with cell membrane
 - Viral proteins are released promoting gene transcription, cytotoxicity
- Lytic infection results in cell death
 - Virions are released or spread from cell to cell
- Latent infection occurs in sensory neurons
 - Latency associated transcripts (LATS)
 - Minimal transcription of DNA, no translation

HSV Infections
- Classification: primary, non-primary, first episode, recurrent, reinfection
- HSV-1: above belt, HSV-2: below belt
- Reactivation: trauma, sunlight, stress
 - Despite antibodies
 - May be related to deficient gamma IF response
 - May recur in same area of skin (unlike VZV)
- Many/most infections are asymptomatic
 - Asymptomatic shedding can transmit HSV to others
- Host factors: immunocompromised, newborn baby

Herpes simplex virus (HSV) Infections
- Mucocutaneous, neonatal, CNS
- Type 1: gingivostomatitis, whitlow, keratitis, encephalitis, eczema herpeticum
- Type 2: genital, meningitis, neonatal
 Main serious clinical problems are in newborn, and immunocompromised hosts
- Healthy hosts may develop gingivostomatitis, encephalitis, acute and recurrent genital HSV
- Disease from viral- and immuno-pathology
Primary HSV-1 gingivostomatitis

Herpetic whitlow, HSV 1

HSV causes about 1000 cases of encephalitis annually in USA
• Most common form of focal encephalitis in USA
• Primary or recurrent HSV-1; skin lesions may be present (not helpful for diagnosis)
• Symptoms, signs: headache, fever, personality change, focal seizures, abnormal EEG, CT, MR
• Differential diagnosis: TB meningitis, arbovirus, enterovirus, flavivirus, mycoplasma, tumor, toxoplasmosis, aneurysm
• Diagnosis: CSF culture is usually negative, but PCR is often positive for HSV
• Treat (ACV) if suspect disease; prognosis better in children than adults; early therapy is best

Perinatal HSV is usually due to Type 2 virus
• 95% neonatal, 5% congenital
• Usually the mother is asymptomatic
• Attack rate >10 times higher in maternal primary infection than recurrence; attack rate about 50%
• Clues: skin vesicles in 70%, fever, seizures, pneumonia, DIC, conjunctivitis
• Diagnosis: immunofluorescence, culture, PCR
• Treat all infants with this diagnosis, even if all they have are a few skin vesicles but seem otherwise well

Neonatal HSV-1

Neonatal HSV-2
Neonatal HSV Infection, 1600 cases annually
- Skin, eye, mucous membrane (40%)
 - Skin vesicles
 - Good prognosis with early treatment
 - Untreated 75% develop disseminated infection
- CNS Infection (35%)
 - Fever, lethargy, seizures, abnormal CSF
 - 50% mortality; major sequelae if survive
- Disseminated disease (25%)
 - Hepatosplenomegaly, jaundice, hepatitis, pneumonia
 - 2/3 develop skin vesicles
 - 70% mortality

Neonatal HSV
- Diagnosis: immunofluorescence, culture, PCR
 - Antibody titers are not useful
- Treat all newborn infants with possible HSV
 - Begin therapy while awaiting diagnostic results
 - Specific treatment (ACV) is very well tolerated
- Recurrent skin vesicles are associated with a poorer prognosis
 - may re-treat with ACV
 - May give 6 weeks of oral ACV

Natural History of VZV
- Primary infection: varicella
 - Highly contagious (airborne)
 - Complications: bacterial superinfection, encephalitis, pneumonia, congenital syndrome
- Secondary infection: zoster
- Zoster is due to reactivation of latent VZV
 - DNA, RNA, proteins in ganglia at autopsy
 - Zoster in a few vaccinees caused by Oka vaccine
 - From low cell-mediated immunity (CMI) to VZV
- No asymptomatic shedding of VZV as with HSV

In the body VZV spreads from cell-to-cell
- In varicella, VZV is transported from the respiratory mucosa to the blood (viremia) in T cells, where virus is not accessible to antibodies.
 - Because cell-to-cell spread is slow, the incubation period of varicella is long (2 weeks).
 - Slow spread prevents host from being overwhelmed before the immune response develops
- T helper (TH1) and cytotoxic T cells are required for host control of virus

Varicella is a generalized illness. Infectious virions are produced in the skin vesicles.

Zoster is initially localized.
- Limited to 1-3 dermatomes.
- May disseminate in immunocompromised hosts.
Congenital varicella syndrome

Fatal neonatal varicella

Zoster in a 3 month old

VZV In the Immunocompromised

- Varicella is likely to be severe
 - Prevent or modify with pre-formed antibodies just after exposure
 - Virus spreads from cell-cell in body
 - requires CMI for host defense
 - Treat most patients immediately with acyclovir
- The frequency of zoster is increased
 - Probably related to low CMI response
 - Likely to suffer post-herpetic neuralgia (PHN) (also elderly)

Latent Infection with VZV

- Latent infection in dorsal root ganglia (DRG)
- 6 of 68 genes (also RNA and proteins) expressed during latency
- Proteins of regulatory genes are expressed in cell cytoplasm, not nucleus
- Suggests regulatory proteins are blocked from normal action, leading to inhibition of cascade of gene expression preventing lytic infection from occurring (latency)
- Latency is established when cell-free VZV in skin vesicles invades neurons
Varicella Vaccine

Only herpesvirus for which there is a vaccine

Live, attenuated, infectious virus (Oka strain)
Licensed for routine use in healthy susceptible individuals in US, in 1995
Recently there has been a marked decrease in varicella, in all age groups
 - Indicates herd immunity
 - Contraindications: pregnancy, immunocompromised, allergy to vaccine components

Varicella Vaccine

Major complaint afterwards: mild rash in 5%
 - 1 month after vaccination; transmission to others is rare
 - This vaccine is extremely safe

80% completely protected; 20% partial immunity

There is little evidence for waning immunity

Subsequent zoster is rare

Varicella, Antelope Valley, CA

The rash of VZV is vesicular.

- Vesicular fluid is highly infectious.
 - Well-formed virions are suspended in it.

Indirect immunofluorescence

To diagnose VZV, HSV

Laboratory Methods for Diagnosis

- Culture, DFA, PCR, cytology on skin rash
 - Can distinguish the Oka virus from wild type virus

- Antibody titers, IgG
 - Acute serum, early in illness
 - Convalescent serum, 10-14 days after onset

- Antibody titers, IgM
 - False positives and false negatives can be a problem
Acyclovir (ACV) is useful to treat HSV, VZV

- Antiviral activity only in infected cells (TK)
- Sensitivity: HSV1, >HSV2, >VZV (EBV, CMV)
- Toxicity is unusual: gastrointestinal, neurologic (headache, seizures, delerium); anemia, thrombocytopenia, bone marrow suppression
- Resistance is a concern, especially in HIV-infected patients
- Newer drugs: famciclovir, valacyclovir
 - Administered orally and less frequently than ACV because better gastrointestinal absorption

Cytomegalovirus (CMV)

- Largest of the herpesviruses (mRNA too)
 - 208 ORFs; gB, gH
 - immune evasion
 - Down regulation of MHC class I expression to reduce effectiveness of cytotoxic T cells
- Host defense: cellular not humoral immunity
- Latency in bone marrow precursors of monocytic peripheral blood cells
 - Differentiation of monocytes into macrophages due to antigenic stimulation reactivates CMV
 - Adverse effects on transplantation

Cytomegalovirus (CMV)

- In healthy adult hosts infection is usually subclinical
 - Mononucleosis-like syndrome occurs but is rare
- Severe, opportunistic infections in immunocompromised hosts
 - AIDS patients, after transplantation
- Fetal (congenital) infections: can be severe
- Perinatal infections: of little consequence
 - At birth (maternal secretions), from breast milk

Congenital CMV Infection

- Most common congenital viral infection in US
 - 40,000 annual cases (1% of all infants)
 - 3,000 symptomatic at birth (jaundice, petechiae, microcephaly, prematurity)
 - 8,000 with sequelae (deafness, retardation)
- Risk to the infant is highest in first trimester (13 weeks) maternal infection
 - primary maternal infection poses greatest risk
 - the fetus is not always protected when an “immune” mother is re-infected with a different strain of CMV
- Distinguish between congenital and perinatal
 - In congenital urine is culture + for CMV in first 3 weeks of life

CMV Infections in the Immunocompromised (including AIDS)

- Frequent
- May be primary or recurrent (reactivation from latency)
- Can have reinfecetion with a new strain
- Symptoms/signs: fever, pneumonia, retinitis, colitis, lymphadenopathy, rash, encephalitis, neutropenia, etc.
- Diagnosis is difficult; must distinguish between true infection/disease and persistent virus
 - Asymptomatic infections occur

Diagnosis of CMV

- Histology: has limitations (not specific)
 - Basophilic inclusion bodies
 - H&E, Pap staining
- Cell culture
 - Cytopathic effect, immunofluorescence
- Serology: acute and convalescent antibody titers are of limited value
 - False positive and false negative IgM titers
- In situ hybridization
- PCR
Treatment of CMV

- **Ganciclovir**
 - Phosphorylation by viral enzymes causes inhibition of viral DNA polymerase (related to acyclovir); toxicity: bone marrow suppression
- **Foscarnet**
 - Inhibits viral DNA polymerase; renal, metabolic toxicity
- **Cidofovir**
 - Inhibits viral DNA polymerase
 - Very toxic (renal, uric acid increase)

Pre-emptive approach
Identify infection before the illness
Treatment used mostly for immunocompromised patients

Transmission of CMV

- Close personal contact
 - Sexual, day care, saliva, tears, urine
 - Virus is not usually airborne
- Cell-associated virus, no skin lesions
- Spread from secretions, on hands
 - Intrauterine/birth/breast milk
 - Transfusion
 - Transplantation

Control of CMV

- Hand washing (eg, after diapering)
- Condoms, abstinence
- Beware of blood
 - Use seronegative, irradiated, filtered blood for high risk patients
- Testing for CMV in transplantation (donor, recipient)
- Vaccine still not available

Epstein-Barr Infections (gamma)

- Major glycoprotein is gp 350 which binds to CD21 on B cells (C3d complement receptor)
 - Patients with x-linked agammaglobulinemia can’t be infected
- Seropositive persons shed virus in saliva (lytic)
- Virus practices immune evasion
 - Genes that mimic IL 10 and decrease IF response, inhibit apoptosis
- Experimental therapy for immunocompromised patients with severe infections/tumors
 - Decrease immunosuppressive therapy if possible
 - Monoclonal antibodies (rituximab: CD 20)
 - Infusion of leukocytes

Epstein-Barr Infections (EBV)

- Infectious mononucleosis, nasopharyngeal carcinoma, lymphomas (including Burkitt’s), oral hairy leukoplakia (lytic infection), X-linked proliferative disease (males only)
- B cells are latently infected in mononucleosis; T cells (atypical lymphocytes) are the host response
- Latency persists in memory B cells
- EBV is not related to chronic fatigue syndrome, but rarely severe chronic illness follows mononucleosis
- In mononucleosis, give steroids if airway obstruction, hemolytic anemia, severe cardiac, neurologic disease (no specific antiviral therapy)

Diagnosis of Mononucleosis

- Usually occurs in young adults
- Symptoms, signs: fever, adenopathy, exudative pharyngitis, rash (ampicillin) hepatosplenomegaly fatigue
- Positive heterophile antibody (monospot)
- EBV specific antibodies
 - Anti VCA (develops early, persists)
 - Anti EBNA (develops late persists)
<table>
<thead>
<tr>
<th>Herpesviruses 6, 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Herpesvirus 6 (beta, like CMV)</td>
</tr>
<tr>
<td>– Roseola in infants (rash, fever, seizures)</td>
</tr>
<tr>
<td>– Outcome of latency in CNS not understood</td>
</tr>
<tr>
<td>– Fevers in immunosuppressed</td>
</tr>
<tr>
<td>– Rare mononucleosis syndrome in adults</td>
</tr>
<tr>
<td>• Herpesvirus 7 (beta, like CMV)</td>
</tr>
<tr>
<td>– Fevers in immunocompromised (HIV)</td>
</tr>
<tr>
<td>• Diagnosis, treatment are not fully developed</td>
</tr>
<tr>
<td>– Most infections are self-limited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Herpesvirus 8 (KHSV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Closely related to EBV</td>
</tr>
<tr>
<td>• Encodes for human proteins (piracy)</td>
</tr>
<tr>
<td>– IL-6, Bcl-2, cheomkines and receptor</td>
</tr>
<tr>
<td>• Infections are rare in children</td>
</tr>
<tr>
<td>– Can cause non-specific fever and rash illness</td>
</tr>
<tr>
<td>• Causes Kaposi’s Sarcoma</td>
</tr>
<tr>
<td>– Elderly</td>
</tr>
<tr>
<td>– HIV-infected</td>
</tr>
<tr>
<td>• Causes primary-effusion lymphoma</td>
</tr>
<tr>
<td>• Castleman’s disease</td>
</tr>
</tbody>
</table>