American Journal of Respiratory and Critical Care Medicine 2000
Vol. 161, pp.1376-1395

TUBERCULOSIS - HISTORY
- Described in ancient civilizations
- 1882 – Koch identifies *Mycobacterium tuberculosis*
- Significant mortality until 20th century
- 1946 – Streptomycin
- 1952 – Isoniazid

TUBERCULOSIS - WORLDWIDE SIGNIFICANCE
- 1/3-1/2 population infected
- Leading cause of death due to single microorganism - ? Surpassed by HIV
- 8-10 million new cases active disease/year
- 2 million deaths/year – 4-5% all deaths

Reported TB Cases, U.S. 1975-2002

TUBERCULOSIS - U.S.
- 1882-1984 - decrease in incidence
- 1985-1992 - 20% increase
- 1992-2002
 * 43% decrease nationally
 * >70% decrease in New York City

M. tuberculosis Genome
- Sequenced 1998
- 4.4 million base pairs, 4000 genes
 * 40% proteins - function known
 * 44% proteins - similar to those previously identified
 * 16% proteins - novel
- Genetically homogeneous relatively young organism in evolutionary terms
M. Tuberculosis Genome
- Two-component sensor/response regulatory systems - few
- Eucaryotic-like systems
- Drug resistance genes
- Lipogenesis/lipolysis
 - High proportion of genome
- Common repetitive sequences
 - ? antigenic variation

TB - Host Defense Mechanisms
- Same as those against respiratory tract infections in general
- Cellular Immunity
 - T cells
 - Macrophages

M. tuberculosis – VIRULENCE FACTORS
- High cell wall lipid content
- Growth Requirements
 - Elevated CO\(_2\)
 - Acidic pH
- Slow growth rate
- Latency/dormancy

M. Tuberculosis – Intracellular Pathogen
- Uptake by cells
- Survive intracellularly
- Evade recognition by cells of immune system

TB – Transmission/Risk of Infection
- Inhalation of droplet nuclei
- Risk of infection
 - Proportional to exposure
- Infection vs. Active Disease
 - Time
 - Age
 - General health status

TB - Pathogenesis
- Primary Infection
- Development of immune response
- Progressive primary disease
- Persistence of viable organisms
- Reactivation disease
TB - Pathogenesis
- Primary Infection
- Development of immune response
- Progressive primary disease
- Persistence of viable organisms
- Reactivation disease

TB – Pulmonary Disease
- Systemic symptoms
- Cough
- (+) Sputum smear for acid fast bacilli
- (+) Sputum culture for *M. tuberculosis*
- Chest X-Ray

TB – Extrapulmonary Disease
- Dissemination of *M. tuberculosis* during initial infection
- Systemic symptoms
- Diagnosis – biopsy and culture
- Common locations
 - Lymph nodes
 - Central nervous system
 - Miliary disease

TB in Patients Infected with HIV
- Increased risk of active disease
- Increased risk of progressive primary disease
- Increased incidence of extrapulmonary disease
- Lack of inflammatory response

Tuberculin Skin Testing
- **PPD** – purified protein derivative
- **Interpretation**
 - ≤ 5 mm = non-reactive or negative
 - ≥ 5 mm = positive in patients at highest risk
 - ≥ 10 mm = positive in patients at some risk
 - ≥ 15 mm = positive in patients without risk
- **Causes of false reactivity**
- **Causes of false negatives**
- **Booster effect**

QuantiFERON-TB Test
- New blood test FDA approved in 2001
- Measures gamma interferon production by lymphocytes following incubation with PPD or *MTb* antigens
- Limited experience/data to date
- Advantages – requires single visit, more objective
- Disadvantages – requires processing by lab with appropriate capability within 12 hrs,
TB - Diagnosis

- History/Physical Exam
- Tuberculin skin testing
- Direct exam for AFB and/or histopathology
- Culture
- Nucleic acid based testing

Classification of infection with *M. tuberculosis*

Implications for treatment

- (+) Exposure, no infection, PPD (-)
- (+) Infection (PPD(+)), No active disease
 - 2000 Guidelines
 - (+) Infection, active disease
 - 2003 Guidelines

TB – Indications For Treatment

(+) PPD, No Active Disease (Latent TB)

Recently infected individuals

- Recent (≤ 2 years) conversion to (+) PPD
- Close contacts of patients with infectious TB
- Persons living and working in settings with increased likelihood of TB exposure
- Children < 5y/o

Increased risk of progression from LTBI to active TB

- History or chest x-ray evidence of prior TB, previously untreated patients
- Immunosuppressed patients (HIV, drug-related)
- Underlying disease

TB – Indications For Treatment

(+) PPD, No Active Disease (Latent TB)

Increased risk of progression from LTBI to active TB

- Immigration within 5 years from areas with high rates of TB
- Children, adolescents, and young adults
- Underweight persons (> 10% ideal body weight)
- Injection drug users (independent of HIV (+))

TB – Indications For Treatment

(+) PPD, No Active Disease – Regimens

(Treatment of latent TB)

2000 Guidelines

- Isoniazid x 9 mos – preferred regimen
- Other regimens appear effective
 - Rifampin x 4 months
 - Rifampin/PZA x 2 months –no longer recommended - increased hepatotoxicity
- Use of single agent effective
- Not 100% effective
TB – Active Disease Treatment Principles

• Multiple drugs
• Prolonged course of treatment
 • High incidence of spontaneous drug resistance
 • Large burden of organisms
 • Slow replication

TB Drug Resistance Rates

<table>
<thead>
<tr>
<th></th>
<th>U.S.</th>
<th>NYC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 1 drug resistance</td>
<td>14%</td>
<td>33%</td>
</tr>
<tr>
<td>MDR</td>
<td>3%</td>
<td>19%</td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 1 drug resistance</td>
<td>13%</td>
<td>14-15%</td>
</tr>
<tr>
<td>MDR</td>
<td>1%</td>
<td>3%</td>
</tr>
</tbody>
</table>

TB – Treatment Principles

• Antimicrobial susceptibility testing for all *M. tb* isolates
• Supervised treatment

TB – Treatment Regimens

• Initial treatment – 4 drugs
 • Isoniazid
 • Rifampin
 • Pyrazinamide
 • Ethambutol
• 6 month regimen – minimum
• Extrapulmonary disease
• Multi-drug resistant *M. tb*

BCG Vaccine

• *Bacillus Calmette Guerin*
• Controversies
 • No consistent efficacy
 • Short-lived protection
• Probable benefit in infants and young children
• Effect on skin testing

Non-Tuberculous Mycobacteria

• *Mycobacterium leprae* – cause of leprosy

Other Non-tuberculous mycobacteria

Distinguishing characteristics:

• Differentiated from *M. tb* microbiologically
• Ubiquitous – in soil, H₂O, food
• NO person-person transmission
Non-Tuberculous Mycobacteria

Classification by Major Clinical Syndromes

Pulmonary
- *M. avium complex, M. kansasii*

Lymphadenitis
- *M. avium complex, M. scrofulaceum*

Skin/Soft Tissue
- *M. fortuitum, M. chelonae, M. abscessus, M. marinum*

Disseminated Disease
- *M. avium complex, M. haemophilum*