Introduction to Antimicrobial Therapy

Christine Kubin, Pharm.D., BCPS
Clinical Pharmacist, Infectious Diseases
New York-Presbyterian Hospital-CUMC
October 22, 2004

Objectives

• Review the classification of antimicrobials
• Define pharmacokinetic and pharmacodynamic principles and their relationship to effective antimicrobial therapy
• Review relevant microbiologic information as it relates to choosing an antimicrobial
• Discuss patient and drug related factors that influence the selection of the appropriate antimicrobial agent
• Identify monitoring parameters to evaluate antimicrobial therapy

What are Antimicrobials???

• Antimicrobials are drugs that destroy microbes, prevent their multiplication or growth, or prevent their pathogenic action
 – Differ in their physical, chemical, and pharmacological properties
 – Differ in antibacterial spectrum of activity
 – Differ in their mechanism of action

Classification of Antimicrobials

• Inhibit cell wall synthesis
 – Penicillins
 – Cephalosporins
 – Carbapenems
 – Monobactams (aztreonam)
 – Vancomycin
• Inhibit protein synthesis
 – Chloramphenicol
 – Tetracyclines
 – Macrolides
 – Clindamycin
 – Streptogramins (quinupristin/dalfopristin)
 – Oxazolidinones (linezolid)
 – Aminoglycosides
• Alter nucleic acid metabolism
 – Rifamycins
 – Quinolones
• Inhibit folate metabolism
 – Trimethoprim
 – Sulfamethoxazole
• Miscellaneous
 – Metronidazole
 – Daptomycin
• Inhibit folate metabolism

Case Presentation #1

• S.I. is a 72 y.o. male with history of SAH s/p aneurysm clipping about 2 months ago. His post-op course was complicated by ventilator-associated pneumonia, hydrocephalus requiring a VP shunt, and renal failure. Now admitted with acute mental status changes and fever.
• PMH: SAH, DM, HTN, hypercholesterolemia
• FH: non-contributory
• SH: +tobacco (4 cigarettes/day)
• Allergies: NKDA
• Occupation: attorney

• PE:
 – T 102.7°F,
 – Tachycardic

• Labs:
 – WBC 14.7, Hct 34.3, plts 295
 – Na 138, K 4.1, Cl 102, HCO3 25, BUN 26, SCr 1.4
 – LFTs well
 – Cultures pending
 – CSF: WBC 725 (96% neutrophils); protein 148; glucose 39

• Diagnosis: VP shunt infection

• Treatment: Antibiotics and shunt removal
 – Antibiotics?
 – Route?
 – Dose?
Case Presentation #2

- 43 y.o. male with congenital bladder extrophy (s/p multiple surgeries now with ureterocolostomy and colostomy), residual short bowel syndrome, multiple hospital admissions for UTIs, sepsis, recently admitted for 1 month with polymicrobial line sepsis, line removed, PICC placed. Returns 10 days later complaining of abdominal pain, N/V.
- PMH: HTN
- FH: non-contributory
- SH: no tobacco, occasional alcohol use
- Allergies: PCN

PE:
- T 99.7°F
- Lungs clear
- Abdomen soft, but indurated area below urostomy bag

Labs:
- WBC 12.4 (↑ from 7.1), Hct 34.8, Plts 290
- Na 139, K 3.7, Cl 105, HCO3 20, BUN 40, SCr 1.8
- LFTs wnl
- UA: 20 WBCs

CT scan:
- Abdominal cystic mass in pelvis with new hydronephrosis

4 days into hospital admission, the cystic collection spontaneously drains. Patient febrile to 101.7°F, tachycardic, increased WBC to 26.4. Cultures drawn. Started on broad spectrum antibiotics.

Selecting an Antimicrobial

- Confirm the presence of infection
 - History and physical
 - Signs and symptoms
 - Predisposing factors
- Identification of pathogen
 - Collection of infected material
 - Stains
 - Bacteriologies
 - Culture and sensitivity
- Selection of presumptive therapy
 - Drug factors
 - Host factors
- Monitor therapeutic response
 - Clinical assessment
 - Lab tests
 - Assessment of therapeutic failure

Antimicrobial therapy

- Empiric
 - Infecting organism(s) not yet identified
 - More “broad spectrum”
- Definitive
 - Organism(s) identified and specific therapy chosen
 - More “narrow” spectrum
- Prophylactic or preventative
 - Prevent an initial infection or its recurrence after infection

Is the Patient Infected???

- CAREFUL history and physical exam including relevant laboratory data and signs and symptoms
 - Temperature
 - White blood cell count (WBC)
 - WBC in normally sterile fluids (e.g. CSF)
 - Any swelling or erythema at a particular site
 - Purulent drainage from a visible site
 - Patient complaints
- Predisposing factors
 - Surgery, procedures, physical limitations, etc.
Selecting an Antimicrobial

- Confirm the presence of infection
 - History and physical
 - Signs and symptoms
 - Predisposing factors
- Identification of pathogen
 - Collection of infected material
 - Stains
 - Serologies
 - Culture and sensitivity
- Selection of presumptive therapy
 - Drug factors
 - Host factors
- Monitor therapeutic response
 - Clinical assessment
 - Lab tests
 - Assessment of therapeutic failure

Culture Results

- Minimum inhibitory concentration (MIC)
 - The lowest concentration of drug that prevents visible bacterial growth after 24 hours of incubation in a specified growth medium
 - Organism and antimicrobial specific
 - Interpretation
 - Pharmacokinetics of the drug in humans
 - Drug's activity versus the organism
 - Site of infection
 - Drug resistance mechanisms
- Report organism(s) and susceptibilities to antimicrobials
 - Susceptible (S)
 - Intermediate (I)
 - Resistant (R)

Susceptibility Testing Methods

- Disk Diffusion (Kirby-Bauer disks)

- Broth Dilution
Susceptibility Testing Methods

- E-test (epilometer test)

Selecting an Antimicrobial

- Confirm the presence of infection
 - History and physical
 - Signs and symptoms
 - Predisposing factors
- Identification of pathogen
 - Collection of infected material
 - Stains
 - Serologies
 - Culture and sensitivity
- Selection of presumptive therapy
 - Drug factors
 - Host factors
- Monitor therapeutic response
 - Clinical assessment
 - Lab tests
 - Assessment of therapeutic failure

Drug Factors

Pharmacokinetics

- Absorption
 - IM, SC, topical
 - GI via oral, tube, or rectal administration
 - Bioavailability = amount of drug that reaches the systemic circulation
- Distribution
 - Affected by the drug’s lipophilicity, partition coefficient, blood flow to tissues, pH, and protein binding
- Metabolism
 - Phase I
 - Generally inactivate the substrate into a more polar compound
 - Dealkylation, hydroxylation, oxidation, deamination
 - Cytochrome P-450 system (CYP3A4, CYP2D6, CYP2C9, CYP1A2, CYP2E1)
 - Phase II
 - Conjugation of the parent compound with larger molecules, increasing the polarity
 - Generally inactivate the parent compound
 - Glucuronidation, sulfation, acetylation

Pharmacodynamics

- Attempts to relate drug concentrations to their effect in the body
 - Desirable = bacterial killing
 - Undesirable = drug side effects
- Bacteriostatic
 - Inhibit growth or replication
- Bactericidal
 - Cause cell death
Pharmacokinetics, Pharmacodynamics, and the MIC

- Concentration vs. time-dependent killing agents
 - Concentration-dependent agents: ↑ bacterial killing as the drug concentrations exceed the MIC
 - Peak/MIC (AUC/MIC) ratio important
 - Quinolones, aminoglycosides
 - Time-dependent agents kill bacteria when the drug concentrations exceed the MIC
 - Time/MIC important
 - Penicillins, cephalosporins

- Post antibiotic effect (PAE)
 - Delayed regrowth of bacteria following exposure to the antimicrobial
 - Varies according to drug-bug combination

Concentration-dependent and Time-dependent agents vs. *Pseudomonas aeruginosa*

AUC/MIC and Survival Relationship for Quinolones

AUC/MIC and Outcomes Relationship for Ciprofloxacin

Pharmacodynamic Parameters and Colony Count after 24 hours for Cefotaxime in *K. pneumoniae*

Antimicrobial Pharmacodynamic Parameters

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Pharmacodynamic Characteristics</th>
<th>Goal of Regimen</th>
<th>Parameter Correlating with In Vivo Efficacy</th>
</tr>
</thead>
</table>
| Aminoglycosides | Concentration-dependent killing | Maximization of Concentrations | Peak/MIC
| Quinolones | | | AUC/MIC, AUC/24h/MIC |
| Metronidazole | | | |
| Cephalosporins| Time-dependent Killing | | |
| Aztreonam | | | |
| Penicillins | Time-dependent Killing | | |
| Cephalosporins| NO Persistent Effects | | |
| Cefotaxime | | | |
| Vancomycin | Time-dependent Killing | | |
| Clindamycin | | | |
| Macrolides | | | |
| Daptomycin | | | |
Post Antibiotic Effect (PAE)

- Delayed regrowth of bacteria following exposure to an antibiotic
 - Varies according to drug-bug combination
- Gram-positive organisms
 - Most antibiotics (beta-lactams) exhibit PAE ~1-2 hours
 - Aminoglycosides exhibit PAE < 1 hour
- Gram-negative organisms
 - Most beta-lactams (except imipenem) have a negligible PAE
 - Aminoglycosides and quinolones have PAE ≥ 2 hours
- Clinical significance unknown
 - Helps choose appropriate dosing interval

Aminoglycoside Concentrations

- 1.7 mg/kg q8h dosing
- 5 mg/kg q24h dosing

Aminoglycoside Concentrations

Other Drug Factors

- Adverse effect profile and potential toxicity
- Cost
 - Acquisition cost + storage + preparation + distribution + administration
 - Monitoring
 - Length of hospitalization + readmissions
 - Patient quality of life
- Resistance
 - Effects of the drug on the potential for the development of resistant bacteria in the patient, on the ward, and throughout the institution

Host Factors

- Allergy
 - Can be severe and life threatening
 - Previous allergic reaction most reliable factor for development of a subsequent allergic reaction
 - Obtain thorough allergy history
 - Penicillin allergy
 - Avoid penicillins, cephalosporins, and carbapenems in patients with true anaphylaxis, bronchospasm
 - Potential to use cephalosporins in patients with a history of rash (1-5-10% cross reactivity)
- Age
 - May assist in predicting likely pathogens and guide empiric therapy
 - Renal and hepatic function vary with age
 - Neonates and elderly
- Pregnancy
 - Fetus at risk of drug teratogenicity
 - All antimicrobials cross the placenta in varying degrees
 - Penicillins, cephalosporins, and erythromycin appear safe
 - Altered drug disposition
 - Penicillins, cephalosporins, and aminoglycosides are cleared more rapidly during pregnancy
 - ↑ intravascular volume, ↑ glomerular filtration rate, ↑ hepatic and metabolic activities
 - Genetic or metabolic abnormalities
 - Glucose-6-phosphate dehydrogenase (G6PD) deficiency
 - Renal and hepatic function
 - Accumulation of drug metabolized and/or excreted by these routes with impaired function
 - ↑ risk of drug toxicity unless doses adjusted accordingly
 - Renal excretion is the most important route of elimination for the majority of antimicrobials
 - Underlying disease states
 - Predispose to particular infectious diseases or alter most likely organisms

Host Factors

- Allergy
 - Can be severe and life threatening
 - Previous allergic reaction most reliable factor for development of a subsequent allergic reaction
 - Obtain thorough allergy history
 - Penicillin allergy
 - Avoid penicillins, cephalosporins, and carbapenems in patients with true anaphylaxis, bronchospasm
 - Potential to use cephalosporins in patients with a history of rash (1-5-10% cross reactivity)
- Age
 - May assist in predicting likely pathogens and guide empiric therapy
 - Renal and hepatic function vary with age
 - Neonates and elderly
- Pregnancy
 - Fetus at risk of drug teratogenicity
 - All antimicrobials cross the placenta in varying degrees
 - Penicillins, cephalosporins, and erythromycin appear safe
 - Altered drug disposition
 - Penicillins, cephalosporins, and aminoglycosides are cleared more rapidly during pregnancy
 - ↑ intravascular volume, ↑ glomerular filtration rate, ↑ hepatic and metabolic activities
 - Genetic or metabolic abnormalities
 - Glucose-6-phosphate dehydrogenase (G6PD) deficiency
 - Renal and hepatic function
 - Accumulation of drug metabolized and/or excreted by these routes with impaired function
 - ↑ risk of drug toxicity unless doses adjusted accordingly
 - Renal excretion is the most important route of elimination for the majority of antimicrobials
 - Underlying disease states
 - Predispose to particular infectious diseases or alter most likely organisms

Other Drug Factors

- Adverse effect profile and potential toxicity
- Cost
 - Acquisition cost + storage + preparation + distribution + administration
 - Monitoring
 - Length of hospitalization + readmissions
 - Patient quality of life
- Resistance
 - Effects of the drug on the potential for the development of resistant bacteria in the patient, on the ward, and throughout the institution

Host Factors

- Allergy
 - Can be severe and life threatening
 - Previous allergic reaction most reliable factor for development of a subsequent allergic reaction
 - Obtain thorough allergy history
 - Penicillin allergy
 - Avoid penicillins, cephalosporins, and carbapenems in patients with true anaphylaxis, bronchospasm
 - Potential to use cephalosporins in patients with a history of rash (1-5-10% cross reactivity)
- Age
 - May assist in predicting likely pathogens and guide empiric therapy
 - Renal and hepatic function vary with age
 - Neonates and elderly
- Pregnancy
 - Fetus at risk of drug teratogenicity
 - All antimicrobials cross the placenta in varying degrees
 - Penicillins, cephalosporins, and erythromycin appear safe
 - Altered drug disposition
 - Penicillins, cephalosporins, and aminoglycosides are cleared more rapidly during pregnancy
 - ↑ intravascular volume, ↑ glomerular filtration rate, ↑ hepatic and metabolic activities
 - Genetic or metabolic abnormalities
 - Glucose-6-phosphate dehydrogenase (G6PD) deficiency
 - Renal and hepatic function
 - Accumulation of drug metabolized and/or excreted by these routes with impaired function
 - ↑ risk of drug toxicity unless doses adjusted accordingly
 - Renal excretion is the most important route of elimination for the majority of antimicrobials
 - Underlying disease states
 - Predispose to particular infectious diseases or alter most likely organisms
Site of Infection

- Most important factor to consider in antimicrobial selection
- Defines the most likely organisms
 - Especially helpful in empiric antimicrobial selection
- Determines the dose and route of administration of antimicrobial
 - Efficacy determined by adequate concentrations of antimicrobial at site of infection
 - Serum concentrations vs. tissue concentrations and relationship to MIC

Site of Infection

Will the antibiotic get there?

- Choice of agent, dose, and route important
 - Oral vs. IV administration
 - Bioavailability, severity of infection, site of infection, function of GI tract
 - Blood and tissue concentrations
 - Ampicillin/piperacillin \rightarrow ↑ concentrations in bile
 - Fluoroquinolones \rightarrow ↑ concentrations in bone
 - Cephalosporins, TMP/SMX, cephalaxin, amoxicillin \rightarrow ↑ concentrations in prostate
 - Ability to cross blood-brain barrier
 - Dependent on inflammation, lipophilicity, low mw, low protein binding, low degree of ionization
 - 3rd or 4th generation cephalosporins, chloramphenicol, ampicillin, PCN, oxacillin
 - Local infection problems
 - Aminoglycosides inactivated by low pH and low oxygen tension
 - Beta-lactams \rightarrow inoculum effect

Concomitant Drug Therapy

- Influences the selection of appropriate drug therapy, the dosage, and necessary monitoring
- Drug interactions
 - ↑ risk of toxicity or potential for ↓ efficacy of antimicrobial
 - May affect the patient and/or the organisms
 - Pharmacokinetic interactions
 - Alter drug absorption, distribution, metabolism, or excretion
 - Pharmacodynamic interactions
 - Alter pharmacologic response of a drug
 - Selection of combination antimicrobial therapy (\geq 2 agents) requires understanding of the interaction potential

Drug Interactions

- Pharmacokinetic
 - An alteration in one or more of the object drug's basic parameters
- Absorption
 - Bioavailability
- Distribution
 - Protein binding
- Metabolism
 - CYP450
- Elimination
 - renal
- Pharmacodynamic
 - An alteration in the drug’s desired effects
- Synergistic/additive
 - May lead to desired or toxic effect
- Antagonistic
 - May lead to detrimental effects
- Indirect effects
 - Effect of one drug alters effect of another

Combination Antimicrobial Therapy

- Synergistic
- Antagonistic
- Indifferent
Selecting an Antimicrobial

- Confirm the presence of infection
 - History and physical
 - Signs and symptoms
 - Predisposing factors
- Identification of pathogen
 - Collection of infected material
 - Stains
 - Serologies
 - Culture and sensitivity
- Selection of presumptive therapy
 - Drug factors
 - Host factors
- Monitor therapeutic response
 - Clinical assessment
 - Lab tests
 - Assessment of therapeutic failure

Monitoring

- Efficacy and toxicity of antimicrobials
- Clinical assessment
 - Improvement in signs and symptoms
 - Fever curve, ↓ WBC
 - ↓ erythema, pain, cough, drainage, etc.
- Antimicrobial regimen
 - Serum levels
 - Renal and/or hepatic function
 - Other lab tests as needed
 - Consider IV to PO switch
- Microbiology reports
 - Modify antimicrobial regimen to susceptibility results if necessary
 - Resistance?
 - “Narrow” spectrum of antimicrobial if appropriate

Antimicrobial Factors in Drug Selection

- Factors to consider:
 - Site of infection (likely organisms gram positive and gram negative)
 - Recently hospitalized
 - Neurosurgery
 - Antibiotic penetration into CSF
 - Route of administration
 - Age
 - Renal function
- Patient empirically started on vancomycin 1 gram IV Q24h and cefepime 2 grams IV Q12h.

Case Presentation #1

- Factors to consider:
 - Most likely abdominal source (gram negative and anaerobic organisms)
 - PCN allergy
 - Renal/hepatic function
 - Multiple admissions and multiple infections
 - ?resistant organisms
 - IV vs. PO antibiotics
 - Short bowel syndrome
- Patient received empiric levofloxacin 500 mg IV Q24h, metronidazole 500 mg IV Q12h, and vancomycin 1g IV Q24h.

Cultures grew MSSA, patient’s therapy changed to oxacillin + rifampin.

Shunt removed. WBC ↓. Patient completed course of IV antibiotics.

Monitor for resolution of infection

Monitor hepatic profile
Cultures grew...

Levofloxacin and metronidazole continued to complete a course of therapy. Surgical intervention. Vancomycin discontinued.

Summary

- Antimicrobials are essential components to treating infections
- Appropriate selection of antimicrobials is more complicated than matching a drug to a bug
- While a number of antimicrobials potentially can be considered, clinical efficacy, adverse effect profile, pharmacokinetic disposition, and cost ultimately guide therapy
- Once an agent has been chosen, the dosage must be based upon the size of the patient, site of infection, route of elimination, and other factors
- Optimize therapy for each patient and try to avoid patient harm
- Use antimicrobials only when needed for as short a time period as needed to treat the infection in order to limit the emergence of bacterial resistance

QUESTIONS?