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Box 1. Examples of malaria vaccine technologies currently

employed in clinical trials

Prime–boost (clinical Phase II)

Priming of the immune response uses antigens expressed as plas-
Few who were actively engaged in malaria vaccine

research 20 years ago (including myself) would have

imagined that, in 2005, there would still be a prediction

of a 10–20-year horizon before vaccines become part

of malaria-control strategies. Why is it still proving so

challenging to produce effective vaccines?

mid DNA or in attenuated viral vectors such as fowlpox or adeno-

virus. Boosting involves use of attenuated viral vectors such as

modified vaccinia Ankara (MVA) expressing the same antigen(s) [9].

Virosomes (clinical Phase I)

Spherical unilamellar phospholipids representing liposomes and

incorporating antigen in the membrane. The vaccine PEV3A contains

peptides of the CSP and of part of AMA-1 of Plasmodium falciparum

(http://www.pevion.com/downloads/pevion/doc/Pevion%20

PhaseI%20Malaria_061804_en.pdf).

Virus-like particles (clinical Phase I–II)
A recombinant virus-like particle (VLP) comprising modified hepa-

titis B core protein with B- and T-cell epitopes of P. falciparum.

A single dose administered with Montanide ISA 720 adjuvant did not

protect subjects [49].

Long synthetic polypeptides (clinical Phase I)
Peptides based on the C terminus of P. falciparum CSP combined

with alum or Montanide ISA 720 adjuvant-induced antibody, CD8C

T-cell and g-interferon responses [50]. Plasmodium vivax CSP
Prospects

In the debate ‘Towards a malaria vaccine’, which was
published in 1985 in Parasitology Today, the conclusions
drawn by the authors of the four articles were optimistic:
(i) that the tandem-repeat sequences that constitute a
substantial and immunodominant part of the circum-
sporozoite protein (CSP) of Plasmodium falciparum
provided a promising candidate for vaccine development
[1]; (ii) that several different asexual blood-stage antigens
or fragments of them could form the basis of an effective
vaccine [2]; (iii) that the first phase of clinical testing of a
transmission-blocking vaccine could soon be considered
[3]; and (iv) that the prospects for practical malaria
vaccines had moved into the realm of feasibility in only
ten years [4].
peptides are similarly immunogenic. Long peptides containing

B- and T-cell epitopes of MSP-3 induced monocyte-dependent

parasite inhibitory Immunoglobulin G responses [9].

Co-expression of recombinant polypeptides

(clinical Phase II)
RTS,S consists of a single polypeptide corresponding to substantial

parts of P. falciparum CSP and the hepatitis B surface antigen,

expressed in yeast. An important component is the adjuvant ASO2A,

which consists of an oil-in-water emulsion incorporating the

immunostimulants monophosphoryl lipid A and the saponin

derivative QS21. (See main text for details of results of the trials.)

Subunit recombinant blood-stage antigens

(clinical Phase I–II)

The C-terminal region of MSP-1 (MSP-142) given with ASO2A

adjuvant was safe and immunogenic. Challenge studies in adults

gave no protection [9]; Phase I and II studies in children in Kenya are

in progress. A similar Phase I study with a subunit AMA-1 vaccine

and a Phase I trial with an MSP-1–AMA-1 chimaera have been

conducted [9].

Recombinant transmission-blocking vaccine

(clinical Phase I)
The Pvs25 ookinete antigen of P. vivax was expressed in yeast,

purified and adsorbed onto Alhydrogelw. Three immunizing doses
Pre-erythrocytic-stage vaccines

By 1985, it had already been shown experimentally and in
humans that irradiated sporozoites could confer a strong
(sterile) immunity [5]. The subsequent focus became the
development of recombinant or peptide vaccines based on
the CSP antigen and other sporozoite surface antigens
that would reproduce or enhance the level of immunity
achieved with the whole attenuated organism. Notably, it
was shown that the C-terminal region of the CSP that
flanks the naturally immunodominant tandem-repeat
region of the molecule contains CD4C and CD8C T-cell
epitopes and that these were incorporated into vaccine
constructs. However, most of the small-scale vaccine trials
subsequently conducted obtained disappointing results
[6]. Vaccine technologies have advanced considerably
since then [7,8] (Box 1), and there is still a range of
recombinant and peptide CSP vaccines under investi-
gation [see the World Health Organization portfolio of
candidate malaria vaccines (http://www.who.int/vaccine_
research/documents/en/malaria_table.pdf)]. As yet, only
one construct (RTS,S) has progressed far in clinical trials.
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induced antibodies that blocked transmission significantly [45].

A similar approach with the P. falciparum homologue is being tested.Corresponding author: Targett, G.A. (geoff.targett@lshtm.ac.uk).
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This vaccine consists of a large segment of the tandem-
repeat region of the CSP, in addition to the T-cell epitopes
of the flanking region, expressed with the hepatitis B
surface antigen in yeast. The vaccine is given with a
three-component adjuvant [9]. The results from trials in
Gambian adults [10] and Mozambican children [11] are
encouraging, with a reported protection in children of
30% in the time to the first clinical episode of malaria,
and 58% protection against severe malaria. However,
these trials have raised questions of fundamental import-
ance to the development of all vaccines that might partly
explain the slow progress in bringing candidate vaccines
successfully through clinical trials – namely, is there
adequate induction of an appropriate memory T-cell
response to provide the long-lived protection that is
required? This seems not to be the case in the Gambian
study [10], and the Mozambican results are also open
to the same interpretation [12]. This must be addressed
in the further series of Phase II trials of RTS,S
being planned.

Trials of vaccines have (understandably) been carried
out in an empirical way, with the focus in the 1980s being
on antibodies as the mediators of protection. For the past
15 years, there has been increasing recognition of the need
to determine at a cellular level which immune responses
must be induced to achieve robust protection (Figure 1).
The demonstration that protection induced by irradiated
sporozoites involves both antibody and cell-mediated
effector mechanisms [5,13] focused attention on liver
stages and the induction of both CD4C and CD8C T-cell
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Figure 1. Breaking the malaria life cycle with vaccination. Pre-erythrocytic stages: (i) antib

schizonts can be stopped by cell-mediated immune responses. Asexual blood stages

merozoite surface and organellar molecules involved in erythrocyte invasion. (iv) Ant

prevent (Plasmodium falciparum) parasite development, probably by preventing cy

fertilization from occurring. (vi) Antibodies against ookinete antigens prevent further dev

from Ref. [51].
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responses that would be effective against multiplicative
intrahepatic schizonts.

The development of a prime–boost strategy for vacci-
nation has proved particularly effective in inducing such
T-cell responses. The vaccines tested using this approach
consist of malaria antigens presented as plasmid DNA or
expressed by attenuated viral vectors, given in a sequence
that provides strong priming and then boosting of the
cellular immune responses [7]. This approach, pioneered
in malaria by Hoffman and colleagues at the US Naval
Medical Research Institute [14] and by Hill and colleagues
[15], has involved the use of complex antigens: for
example, the sporozoite surface protein TRAP (thrombo-
spondin-related adhesion protein) fused to a multi-epitope
(ME) string of B cell, CD8C and CD4C epitopes from
sporozoite and liver-stage antigens. Immunization of
malaria-naı̈ve volunteers has given full protection in a
small number of cases and, where this did not occur, it
has provided evidence of a substantial reduction in the
number of liver-stage parasites and, hence, the number of
merozoites released to invade the blood [16]. Disappoint-
ingly, trials in an endemic area following the same regimes
have not induced any protection so far, despite greatly
enhanced T-cell responses as measured by g-interferon
enzyme-linked immunospot (ELISPOT) assays [17].
Again, this raises the issue of the cellular basis of the
immune responses required and, perhaps, those to be
avoided. Further clinical trials are in progress.

While the trials with RTS,S and other pre-erythrocytic
recombinant and peptide vaccines continue with varying
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schedules, antigen combinations and adjuvants, attempts
are being made to exploit the findings from 30 years ago to
produce a whole-organism (attenuated sporozoite) vaccine
[18]. Of interest is the recent demonstration that irra-
diated sporozoites enhance the ability of splenic antigen-
presenting cells to process and present sporozoite antigens
and to prime effector T-cell responses [19]. This might
provide a lead as to the type of immune response required
for good protection to be achieved [20]. Mueller et al. [21]
recently described a different approach for producing
attenuated sporozoites. They used gene disruption to
produce sporozoites deficient in the uis3 gene, which codes
for a protein thought to be involved in sporozoite motility.
Immunization with the uis3-deficient sporozoites of the
rodent malaria parasite Plasmodium berghei gave com-
plete protection. The problems associated with the large-
scale production of both radiation- and genetically
attenuated sporozoites are considerable [22] but the
whole-organism approach to vaccination remains a valid
alternative to the subunit approaches because it has
been shown to provide protection in humans for at least
ten months [5].

Asexual-blood-stage vaccines

Although improved vaccine technologies have been central
to attempts to develop more-effective pre-erythrocytic-stage
vaccines (Box 1), studies of asexual blood stages during the
past 20 years have revealed a detailed array of molecules
associated with parasite development and pathogenesis,
and the natural acquisition of immunity. At the molecular
level, the advances have been remarkable during this time
and are set to continue with the genomic and proteomic data
that are accumulating [23,24]. That said, the asexual-blood-
stage target antigen that is undergoing the most intensive
investigation is still, as in 1985, the merozoite surface
protein MSP-1.

It was already recognized in 1985 that the asexual
blood stages are the major target of naturally acquired
immune responses, that immunization with merozoite
antigens involved in red blood cell invasion (Figure 1) is
likely to be complicated by antigenic diversity and that the
preferred molecules or epitopes for inclusion in a vaccine
might, consequently, be those that are nonvariant [25].
The majority view today would not be very different and it
is interesting to consider why the first asexual-blood-stage
vaccines are going into clinical trials only now.

Naturally acquired immunity in a highly endemic set-
ting is a state of premunition. Individuals remain ‘immune’
and asymptomatic because they have low-grade chronic
infections [25]. This acquired immunity is induced pre-
dominantly by antigens that are polymorphic or that
undergo clonal antigenic variation [26]. This contributes
to the chronic state of infection by enabling the parasite to
evade immune responses. In one of the few clinical trials
carried out with asexual-blood-stage antigens, vaccination
with MSP-1, MSP-2 and the ring-infected erythrocyte
surface antigen (RESA) reduced parasite density signifi-
cantly, but this was a strain-specific effect [27]. Apical
membrane antigen (AMA)-1, another vaccine candidate
that was known in 1985, is also highly polymorphic and,
similarly, induces strain-specific immunity [28].
www.sciencedirect.com
A fair conclusion that is drawn frequently from studies
of natural immunity is that, for vaccine development, it
would be better to focus on cryptic epitopes [24] rather
than epitopes of the highly immunogenic polymorphic or
clonally variant domains [29]. However, some promising
liver- and blood-stage candidate vaccine molecules have
been selected after analysis of naturally acquired immune
responses [30,31]. Also, the variant surface antigens
(VSAs) of parasites that cause severe disease are different
from and more immunogenic than those isolated from
cases of mild malaria [32]. The possibility of exploiting this
as a vaccine strategy is considered later.

Some of the candidate antigens under investigation are
poorly immunogenic because they have a limited number
of T-cell determinants; hence, they are MHC restricted
and induce an immune response in only subsets of the
population. There are ways to overcome this that have
been known for a long time, notably coupling the relatively
small vaccine molecules to carriers containing T-cell
epitopes [33]. Other features of the asexual blood stage
of infection that could compromise the induction of a
strong response to vaccines are that parasitized erythro-
cytes can suppress maturation of dendritic cells, thus
impairing antigen presentation to T cells [34], and can
cause apoptosis of malaria-specific T cells and B cells [25].
Infants and young children are the principal target
population for malaria vaccines, and maternally derived
antibodies might impair the ability of the vaccinated
infant to make an adequate antibody response to some
candidate vaccines. Vaccine-dosing schedules could over-
come this inhibitory effect on antibody production, and
CD8C T-cell responses do not seem to be impaired [35].

These various hurdles pose a considerable problem for
subunit vaccine design and probably explain the relative
lack of experimental success of blood-stage vaccines,
despite the recognition in 1985 that immunization with
processed fragments of what is now called MSP- 1 induces
protective immune responses [2].

The emphasis on developing candidate asexual-blood-
stage vaccines continues to be based on subunit strategies
(Box 1) but, stimulated by studies from more than 20 years
ago, malaria-naı̈ve volunteers were recently shown to be
fully protected against homologous challenge if immun-
ized using extremely low-dose infections by inoculation of
w30 erythrocytes infected with P. falciparum on three
occasions, with each infection being drug cured eight days
after induction. Of particular interest is the observation
that protection seemed to be cell mediated rather than
antibody mediated [36]. This has the appearance of an
innate, cytokine-mediated protection induced early in the
infection [37]. However, this re-awakening of the whole-
organism approach to vaccination against blood stages
requires further investigation to see whether there is a
feasible way of exploiting it, perhaps by focusing on
antigens that are targets of cell-mediated immunity [38].

In addition, studies of the P. falciparum VSAs that are
located on the infected erythrocyte surface have revealed
a potentially novel approach to vaccination (Figure 1).
These variant antigens are responsible for sequestration
of the infected red blood cells and for antigenic variation
of the parasites. A unique subset of VSAs that binds to
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chondroitin sulfate A has been identified on placental
isolates of P. falciparum. The best-characterized variant is
VAR2CSA, which is sex specific and highly transcribed
[39,40]. Also, as we have seen, the variant proteins from
parasites that cause severe malaria in non-immune
patients differ from those expressed by parasites that
cause uncomplicated malaria [32,41]. Targeting these
small groups of variants offers the intriguing possibility
of developing vaccines specifically to protect women in
pregnancy and the children most at risk of severe disease.

Transmission-blocking vaccines

It was known more than 20 years ago that immune
responses to antigens expressed on macrogametes and
microgametes of various Plasmodium species modulate
transmission to mosquitoes [3] (Figure 1). The Pfs230 and
Pfs48/45 gamete antigens of P. falciparum have been
studied in detail, and antibodies against both block
transmission extremely effectively [42,43]. Parallel
studies revealed Pfs25 and Pfs28 antigens, and their
homologues in Plasmodium vivax and other Plasmodium
species, which are expressed only on the zygote and
ookinete stages within the mosquito (Figure 1). Antibodies
against these antigens also block sporogonic (oocyst)
development in the mosquito extremely effectively [43].
The conformational structure of both protein families has
complicated their cloning and expression in an immuno-
genic form that is suitable for testing as a candidate
vaccine. An advantage when testing this type of vaccine is
that animals can be immunized with the selected vaccine
construct and then their sera can be tested for trans-
mission-blocking activity against the human parasite in a
membrane-feeding assay [44]. Phase I clinical trials of
recombinant forms of the ookinete antigens of P. vivax –
Pvs25 and Pvs28 – have started [45] and the homologous
P. falciparum vaccines will soon be tested. Forthcoming
trials will probably focus on series of Phase I safety and
immunogenicity trials of different vaccine constructs, but
always with the option of testing sera from the volunteers
for efficacy in the membrane-feeding assay. Beyond that,
transmission-blocking vaccines might be of greatest use
in protecting the efficacy of other malaria vaccines by
preventing transmission of vaccine-resistant strains of
parasite. The recent demonstration [46] that the proteome
of male gametocytes contains 36% male-specific proteins
and that the proteome of female gametocytes contains 19%
female-specific proteins offers the potential to select new
targets for sexual-stage-specific vaccines.

Future perspectives

Effective vaccines for malaria must reproduce or, even
better, improve naturally acquired immunity. However,
the latter, which is directed primarily against asexual
blood stages, requires repeated exposure and involves
persistence of infection, responses to complex antigenic
polymorphisms, immune modulation and immune eva-
sion. On that basis, it has been argued that, to be effective,
a vaccine should not induce a sterilizing immunity,
certainly against the clinically important phase of
infection [47]. The goal for pre-erythrocytic (and trans-
mission-blocking) vaccines remains the prevention of all
www.sciencedirect.com
parasite development, but this is far from being achieved
at present. It is doubtful whether any of the vaccines
currently scheduled for clinical trials will, on their own,
have the efficacy and long-term effectiveness to justify
widescale use. This will probably be achieved only with
combination, multi-component vaccines.

The first generation of malaria vaccines will probably
be used to supplement strategies of vector control and
drug treatment for reducing rates of morbidity and
mortality [48]. A vaccine that is good enough to be an
effective alternative to treatment and vector control
remains a more distant goal and might require another
20 years to perfect.
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