Introduction to Antimicrobial Therapy

Christine Kubin, Pharm.D., BCPS
Clinical Pharmacist, Infectious Diseases

Case #1
L.G. is a 78 yo woman admitted for cardiac cath. 3-vessel disease was identified and she was taken to the OR for CABG.
Post-op in CTICU - patient did well. Extubated on POD#2.
Transferred to the floor POD#4
POD#6: spiked a temp to 101.7 with respiratory distress. Re-intubated and transferred back to the ICU. Blood, urine, sputum cultures were obtained.

Case #1 (cont.)
The decision is made to start the patient on broad-spectrum antibiotics for presumed pneumonia
The Surgery Resident, being his first week, is unsure which antibiotic to start, but remembers that piperacillin/tazobactam is "a broad-spectrum antibiotic"
What questions should the resident ask himself in deciding which antibiotic to choose?

Case #2
68 y.o. female with HTN, anxiety with chest pain symptoms
7/27/05: Cath - 3 vessel CAD with normal LV function
9/12/05: admitted for CABG x 4 with LIMA without complications
9/13/05: extubated, diffuse ECG changes w/pericarditis, a-fib, worsening hypotension, increased pressor requirements, re-explored in OR (RV failure)
9/14/05: hypotension with low filling pressures, severe cardiogenic shock with ARDS, VF arrest, emergent sternotomy, IABP placed
9/18/05: IABP d/c'd, duotube placed
9/19/05: extubated
9/21/05: re-intubated

Case #2 (cont.)
9/23/05: febrile, increase in pressor requirements, blood cultures drawn, started empiric antibiotics: vancomycin 1g IV q24h + piperacillin/tazobactam 4.5 g IV q8h
Question: Are these empiric antibiotics appropriate?
- Spectrum?
- Consider existing culture and susceptibility results
- Doses?
- Consider existing or potential microbiology
- Consider site of infection
- Consider end-organ function
9/25/05: blood cultures + P. aeruginosa, tobramycin 160 mg IV q24h added, central lines changed (cordis, PA catheter)
9/27/05: cath tip +P. aeruginosa, C. albicans; additional blood cultures drawn
Question: Is the addition of tobramycin appropriate?
- Synergy?
- Dose?

What You Need to Know to Treat with Antibiotics...
Know the drugs
Know the microbiology
Know the patient
What You Need to Know to Treat with Antibiotics…

- Know the drugs
- Know the microbiology
- Know the patient

Classification of Antimicrobials

What are Antimicrobials???

- Antimicrobials are drugs that destroy microbes, prevent their multiplication or growth, or prevent their pathogenic action
 - Differ in their physical, chemical, and pharmacological properties
 - Differ in antibacterial spectrum of activity
 - Differ in their mechanism of action

Classification of Antimicrobials

- Inhibit cell wall synthesis
 - Penicillins
 - Cephalosporins
 - Carbapenems
 - Monobactams (aztreonam)
 - Vancomycin
- Inhibit protein synthesis
 - Chloramphenicol
 - Tetracyclines
 - Glycylcycline (Tigecycline)
 - Macrolides
 - Clindamycin
 - Streptogramins (quinupristin/dalfopristin)
 - Oxazolidinones (linezolid)
 - Aminoglycosides
- Alter nucleic acid metabolism
 - Rifamycins
 - Quinolones
- Inhibit folate metabolism
 - Trimethoprim
 - Sulfonamides
- Miscellaneous
 - Metronidazole
 - Daptomycin

Beta-lactams

Vancomycin
Protein Synthesis Inhibitors

Inhibitors of Folate Metabolism

Rifamycins

Quinolones

Miscellaneous

Antimicrobial therapy

Protein Synthesis Inhibitors
- Aminoglycosides
- Micafungin
- Trityls
- Chloramphenicol
- Penicillins
- Tetraacyclines
- Erythromycin

Inhibitors of Folate Metabolism
- Dihydropteroate synthase
- 5-MTHF reductase
- Tetrahydrofolic acid

Rifamycins
- Rifampin

Quinolones
- Ciprofloxacin

Miscellaneous
- Daptomycin
- Metronidazole

Antimicrobial therapy
- **Empiric**
 - Infection(s) not yet identified
 - More "broad spectrum"
- **Definitive**
 - Organism(s) identified and specific therapy chosen
 - More "narrow" spectrum
- **Prophylactic or preventative**
 - Prevent an initial infection or its recurrence after infection
What You Need to Know to Treat with Antibiotics…

■ Know the drugs
■ Know the microbiology
■ Know the patient

Culture Results

■ Minimum inhibitory concentration (MIC)
 - The lowest concentration of drug that prevents visible bacterial growth after 24 hours of incubation in a specified growth medium
 - Organism and antimicrobial specific
 - Interpretation
 ■ Pharmacokinetics of the drug in humans
 ■ Drug’s activity versus the organism
 ■ Site of infection
 ■ Drug resistance mechanisms

■ Report organism(s) and susceptibilities to antimicrobials
 - Susceptible (S)
 - Intermediate (I)
 - Resistant (R)

Susceptibility Testing Methods

■ Disk Diffusion (Kirby-Bauer disks)

Susceptibility Testing Methods

■ Broth Dilution
Susceptibility Testing Methods
- E-test (epsilometer test)

What You Need to Know to Treat with Antibiotics...
- Know the drugs
- Know the microbiology
- Know the patient

Pharmacokinetics, Pharmacodynamics, and the MIC
- Concentration vs. time-dependent killing agents
 - Concentration-dependent agents: bacterial killing as the drug concentrations exceed the MIC
 - Peak/MIC (AUC/MIC) ratio important
 - Time-dependent agents: kill bacteria when the drug concentrations exceed the MIC
 - Time>MIC important
 - Pencillins, cephalosporins
- Post antibiotic effect (PAE)
 - Delayed regrowth of bacteria following exposure to the antimicrobial
 - Varies according to drug-bug combination

Concentration-dependent and Time-dependent agents vs. Pseudomonas aeruginosa

Antimicrobial Pharmacodynamic Parameters

<table>
<thead>
<tr>
<th>Drug Class</th>
<th>Pattern of Activity</th>
<th>PK-PD parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta lactams</td>
<td>Time-dependent killing and prolonged persistent effects</td>
<td>T > MIC</td>
</tr>
<tr>
<td>PCNs</td>
<td>Time-dependent killing and prolonged persistent effects</td>
<td>T > MIC</td>
</tr>
<tr>
<td>Cepha</td>
<td>Time-dependent killing and prolonged persistent effects</td>
<td>T > MIC</td>
</tr>
<tr>
<td>Carbapenems</td>
<td>Time-dependent killing and prolonged persistent effects</td>
<td>T > MIC</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>Concentration-dependent killing and prolonged persistent effects</td>
<td>Peak / MIC</td>
</tr>
<tr>
<td>Metronidazole</td>
<td>Concentration-dependent killing and prolonged persistent effects</td>
<td>24 h AUC / MIC</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td>Concentration-dependent killing and prolonged persistent effects</td>
<td>24 h AUC / MIC</td>
</tr>
<tr>
<td>Daptomycin</td>
<td>Concentration-dependent killing and prolonged persistent effects</td>
<td>24 h AUC / MIC</td>
</tr>
<tr>
<td>Macrolides</td>
<td>Time-dependent killing and prolonged persistent effects</td>
<td>24 h AUC / MIC</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>Time-dependent killing and prolonged persistent effects</td>
<td>24 h AUC / MIC</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td>Time-dependent killing and prolonged persistent effects</td>
<td>24 h AUC / MIC</td>
</tr>
<tr>
<td>Ketolides</td>
<td>Time-dependent killing and prolonged persistent effects</td>
<td>24 h AUC / MIC</td>
</tr>
<tr>
<td>Linezolid</td>
<td>Time-dependent killing and prolonged persistent effects</td>
<td>24 h AUC / MIC</td>
</tr>
<tr>
<td>Beta lactams</td>
<td>Time-dependent killing and prolonged persistent effects</td>
<td>T > MIC</td>
</tr>
<tr>
<td>PCNs</td>
<td>Time-dependent killing and prolonged persistent effects</td>
<td>T > MIC</td>
</tr>
<tr>
<td>Cepha</td>
<td>Time-dependent killing and prolonged persistent effects</td>
<td>T > MIC</td>
</tr>
<tr>
<td>Carbapenems</td>
<td>Time-dependent killing and prolonged persistent effects</td>
<td>T > MIC</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>Concentration-dependent killing and prolonged persistent effects</td>
<td>Peak / MIC</td>
</tr>
<tr>
<td>Metronidazole</td>
<td>Concentration-dependent killing and prolonged persistent effects</td>
<td>24 h AUC / MIC</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td>Concentration-dependent killing and prolonged persistent effects</td>
<td>24 h AUC / MIC</td>
</tr>
<tr>
<td>Daptomycin</td>
<td>Concentration-dependent killing and prolonged persistent effects</td>
<td>24 h AUC / MIC</td>
</tr>
<tr>
<td>Macrolides</td>
<td>Time-dependent killing and prolonged persistent effects</td>
<td>24 h AUC / MIC</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>Time-dependent killing and prolonged persistent effects</td>
<td>24 h AUC / MIC</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td>Time-dependent killing and prolonged persistent effects</td>
<td>24 h AUC / MIC</td>
</tr>
<tr>
<td>Ketolides</td>
<td>Time-dependent killing and prolonged persistent effects</td>
<td>24 h AUC / MIC</td>
</tr>
<tr>
<td>Linezolid</td>
<td>Time-dependent killing and prolonged persistent effects</td>
<td>24 h AUC / MIC</td>
</tr>
</tbody>
</table>

Rationale for Extended-Interval Aminoglycoside Dosing
- Concentration-dependent killing
- Post-antibiotic effect
- Tissue penetration
- Negligible troughs potentially reduce toxicity
 - Renal accumulation is saturable
What You Need to Know to Treat with Antibiotics…

- Know the drugs
- Know the microbiology
- Know the patient

Site of Infection

- **Most important** factor to consider in antimicrobial selection
- Defines the most likely organisms
 - Especially helpful in empiric antimicrobial selection
- Determines the dose and route of administration of antimicrobial
 - Efficacy determined by adequate concentrations of antimicrobial at site of infection
 - Serum concentrations vs. tissue concentrations and relationship to MIC

Host Factors

- **Allergy**
 - Can be severe and life threatening
 - Previous allergic reaction most reliable factor for development of a subsequent allergic reaction
 - Obtain thorough allergy history
 - Penicillin allergy
 - Avoid penicillins, cephalosporins, and carbapenems in patients with true anaphylaxis, bronchospasm
 - Potential to use cephalosporins in patients with a history of rash (~5-10% cross reactivity)
- **Age**
 - May assist in predicting likely pathogens and guide empiric therapy
 - Renal and hepatic function vary with age
- **Pregnancy**
 - Fetus at risk of drug teratogenicity
 - Most antimicrobials cross the placenta in varying degrees
 - Penicillins, cephalosporins, and erythromycin appear safe
 - Altered drug disposition
 - Penicillins, cephalosporins, and aminoglycosides are cleared more rapidly during pregnancy
 - ↑ intravascular volume, ↑ glomerular filtration rate, ↑ hepatic and metabolic activities
- **Genetic or metabolic abnormalities**
 - Glucose-6-phosphate dehydrogenase (G6PD) deficiency
- **Renal and hepatic function**
 - Accumulation of drug metabolized and/or excreted by these routes with impaired function
 - ↑ risk of drug toxicity unless doses adjusted accordingly
 - Renal excretion is the most important route of elimination for the majority of antimicrobials
- **Underlying disease states**
 - Predispose to particular infectious diseases or alter most likely organisms
What You Need to Know to Treat with Antibiotics…

- Know the drugs
- Know the microbiology
- Know the patient

Site of Infection

- **Most important** factor to consider in antimicrobial selection
- Defines the most likely organisms
 - Especially helpful in empiric antimicrobial selection
- Determines the dose and route of administration of antimicrobial
 - Efficacy determined by adequate concentrations of antimicrobial at site of infection
 - Serum concentrations vs. tissue concentrations and relationship to MIC

Pharmacokinetics

- Absorption
 - IM, SC, topical
 - GI via oral, tube, or rectal administration
 - Bioavailability = amount of drug that reaches the systemic circulation
- Distribution
 - Affected by the drug’s lipophilicity, partition coefficient, blood flow to tissues, pH, and protein binding
- Metabolism
 - Phase I
 - General inactivate the substrate into a more polar compound
 - Dealkylation, hydroxylation, oxidation, deamination
 - Cytochrome P-450 system (CYP3A4, CYP2D6, CYP2C9, CYP1A2, CYP2E1)
 - Phase II
 - Conjugation of the parent compound with larger molecules, increasing the polarity
 - Generally inactivate the parent compound
 - Glucuronidation, sulfation, acetylation

Pharmacokinetics

- Elimination
 - Total body clearance
 - Renal + non-renal clearance
 - Renal clearance
 - Glomerular filtration, tubular secretion, passive diffusion
 - Dialysis
 - Non-renal clearance
 - Sum of clearance pathways not involving the kidneys
 - Usually hepatic clearance, but also via biliary tree, intestines, skin
 - Half-life
 - Steady state concentrations reached after 4-5 half lives
 - Varies from patient to patient
 - Affected by changes in end-organ function and protein binding

Drug/PK/PD Factors

- Influences the selection of appropriate drug therapy, the dosage, and necessary monitoring

- Drug interactions
 - ↑ risk of toxicity or potential for ↓ efficacy of antimicrobial
 - May affect the patient and/or the organisms
 - Selection of combination antimicrobial therapy (≥ 2 agents)
 - Requires understanding of the interaction potential
 - Pharmacokinetic interactions
 - Pharmacodynamic interactions

Concomitant Drug Therapy
Drug Interactions

- Pharmacokinetic
 - An alteration in one or more of the object drug’s basic parameters
- Absorption
 - Bioavailability
- Distribution
 - Protein binding
- Metabolism
 - CYP450
- Elimination
 - renal

Pharmacodynamic
- An alteration in the drug’s desired effects
- Synergistic/additive
 - May lead to desired or toxic effect
- Antagonistic
 - May lead to detrimental effects
- Indirect effects
 - Effect of one drug alters effect of another

Antimicrobial Therapy

- Site of infection / Microbiology
 - Where is it?
 - What organisms need to be covered?
 - Gram positives, gram-negatives, anaerobes
 - If anaerobic, MRSA
 - What are the organisms in the unit?
- Antibiotic
 - Does the patient have any allergies?
 - Will the antibiotic reach sufficient concentrations at the site of infection?
 - Penetration
 - Blood-brain barrier
 - How is the antibiotic cleared?
 - What are the potential toxicities?
 - What is the impact on resistance?
 - Drug interactions?
 - Good vs. bad
- Patient
 - Comorbidity
 - Ate risk likely organisms and potential sites of infection
 - Toxicities
 - End-organ function
 - Age/weight

Combination Antimicrobial Therapy

- Synergistic
- Antagonistic
- Indifferent

Antimicrobial Therapy

- Site of infection / Microbiology
 - Where is it?
 - What organisms need to be covered?
 - Gram positives, gram-negatives, anaerobes
 - If anaerobic, MRSA
 - What are the organisms in the unit?
- Antibiotic
 - Does the patient have any allergies?
 - Will the antibiotic reach sufficient concentrations at the site of infection?
 - Penetration
 - Blood-brain barrier
 - How is the antibiotic cleared?
 - What are the potential toxicities?
 - What is the impact on resistance?
 - Drug interactions?
 - Good vs. bad
- Patient
 - Comorbidity
 - Ate risk likely organisms and potential sites of infection
 - Toxicities
 - End-organ function
 - Age/weight

Summary

- Antimicrobials are essential components to treating infections
- Appropriate selection of antimicrobials is more complicated than matching a drug to a bug
- While a number of antimicrobials potentially can be considered, spectrum, clinical efficacy, adverse effect profile, pharmacokinetic disposition, and cost ultimately guide therapy
- Once an agent has been chosen, the dosage must be based upon the size of the patient, site of infection, route of elimination, and other factors
- Optimize therapy for each patient and try to avoid patient harm

Other Drug Factors

- Adverse effect profile and potential toxicity
- Cost
 - Acquisition cost + storage + preparation + distribution + administration
 - Monitoring
 - Length of hospitalization + readmissions
 - Patient quality of life
- Resistance
 - Effects of the drug on the potential for the development of resistant bacteria in the patient, on the ward, and throughout the institution

QUESTIONS?