Antifungal Agents

Fungi

Yeasts
- Candida sp.
 - C. albicans
 - C. tropicalis
 - C. parapsilosis
 - C. krusei

Moulds
- Aspergillus sp.
 - A. fumigatus
 - A. flavus
 - A. niger

Opportunistic fungi
- Normal flora
 - Candida spp.
- Ubiquitous in our environment
 - Aspergillus spp.
 - Cryptococcus spp.
 - Mucor spp.

Endemic geographically restricted
- Blastomyces sp.
 - Coccidioides sp.
 - Histoplasma sp.

Newly emerging fungi
- Fusarium
- Scedosporium
- Trichosporon

Risk Factors for Fungal Disease

Candidiasis
- Antibiotics
- Indwelling catheters
- Hyperalimentation
- Multiple abdominal surgeries
- Prosthetic material
- Severe burns
- Neoplastic diseases/chemotherapy
- Immunosuppressive therapy
- Diabetes mellitus
- Extremes of age

Aspergillosis
- Granulocytopenia (↓ neutrophil numbers or function)
- T-cell dysfunction
- Hematologic and other malignancies
- Organ allograft recipients
- Immunosuppressive therapy
- Corticosteroids
- Chronic granulomatous disease
- AIDS
- Burn patients

An optimal antifungal drug has...

- Wide spectrum of activity
- Favorable pharmacokinetic profile
- Adequate in vivo efficacy
- Low rate of toxicity
- Low cost
Invasive Aspergillosis Mortality

Review of 1941 Patients from 50 Studies

Targets of Antifungal Agents

Systemic Antifungal Agents
By Mechanism of Action

- Membrane disrupting agents
 - Amphotericin B

- Nucleic acid inhibitor
 - Fluconosine

- Ergosterol synthesis inhibitors
 - Azoles

- Glucan synthesis inhibitors
 - Echinocandins

Amphotericin B

- Polyene
- Clinical use since 1960
- Insoluble in water
 - Solubilized by sodium deoxycholate
- Most broad spectrum antifungal
 - "gold standard"

Pharmacokinetics
- Extensively tissue bound
 - Highest concentrations in liver, spleen, bone marrow with less in kidneys and lung
- Half-life
 - Tissue ~15 days, Plasma ~5 days

The Promise of a Dynamic Era...

Amphotericin B Binds to Ergosterol and Generates Pores

- Mechanism of action
 - Binds to ergosterol and alter cell membrane permeability → cell death
 - Also binds to cholesterol → adverse effects

Amphotericin B Binds to Ergosterol and Generates Pores

By Mechanism of Action

- Membrane disrupting agents
 - Amphotericin B

- Nucleic acid inhibitor
 - Fluconosine

- Ergosterol synthesis inhibitors
 - Azoles

- Glucan synthesis inhibitors
 - Echinocandins

The Promise of a Dynamic Era...

Amphotericin B Binds to Ergosterol and Generates Pores

- Mechanism of action
 - Binds to ergosterol and alter cell membrane permeability → cell death
 - Also binds to cholesterol → adverse effects

Amphotericin B Binds to Ergosterol and Generates Pores

- Mechanism of action
 - Binds to ergosterol and alter cell membrane permeability → cell death
 - Also binds to cholesterol → adverse effects

Amphotericin B Binds to Ergosterol and Generates Pores

- Mechanism of action
 - Binds to ergosterol and alter cell membrane permeability → cell death
 - Also binds to cholesterol → adverse effects
Amphotericin B
Most broad spectrum antifungal – long considered the “gold standard”

- Clinical activity
 - Candida sp.
 - C. lusitaniae often resistant
 - Cryptococcus neoformans
 - Blastomycosis
 - Histoplasmosis
 - Aspergillus sp.
 - Zygomycetes
 - Rhizopus sp., Mucor sp., etc.
 - Little to no activity
 - Aspergillus terreus
 - Aspergillus nidulans
 - Aspergillus flavus
 - Fusarium sp.
 - Pseudoallescheria boydii
 - Scedosporium prolificans
 - Trichosporon beigelii

- Pharmacokinetics
 - Intravenous formulation only
 - Distribution
 - Extensively tissue bound
 - Half-life
 - Tissue ~15 days
 - Plasma ~5 days

- Toxicities
 - Nephrotoxicity
 - Infusion Related Reactions (IRRs)
 - Electrolyte Abnormalities
 - Thrombophlebitis
 - Anemia

Available Lipid-Based Amphotericin B Agents

- Lipid Complex ABLC, Abelcet®
 - Flattened, ribbon-like complex
 - Molecular ratio (drug:lipid) = 3:7
 - Particle size = 1,600 – 11,000 nm.

- Colloidal Dispersion ABCD, Amphotec®
 - Elongated disk structure
 - Molecular ratio (drug:lipid) = 1:1
 - Particle size = 120 – 140 nm.

- Liposomal L-AmB, Ambisome®
 - Closed, fluid-filled liposome
 - Molecular ratio (drug:lipid) = 1:9
 - Particle size = 45 - 80 nm.

Understanding the Candida species

- Fusicoccin
 - Itraconazole
 - Fluconazole
 - Voriconazole

Azole Antifungals

- Imidazoles
 - Ketoconazole

- Triazoles
 - Itraconazole
 - Fluconazole
 - Voriconazole

- Mechanism of action
 - Inhibit ergosterol synthesis through inhibition of CYP51-dependent lanosterol 14α-demethylase
 - Depletion of ergosterol on fungal cell membrane

- Resistance
 - ERG 11 mutations (gene encoding 14α-sterol demethylase) leading to overexpression
 - ↑ azole efflux
 - ↑ production or alteration 14α-demethylase

Lipid Amphotericin B Product Comparison

- Yeast:
 - C. albicans
 - Yeast: ketoconazole: fluconazole: itraconazole: voriconazole

- Other yeasts
 - ketoconazole: fluconazole: itraconazole: voriconazole

- Resistance yeasts
 - ketoconazole: fluconazole: itraconazole: voriconazole

- Moulds
 - Aspergillus
 - Other moulds
 - Zygomycetes
 - Other fungi

- Echinocandins
 - Amphotericin B
 - Fusidic acid

- Azole Antifungals Spectrum of Activity
Fluconazole

- Favorable pharmacokinetic and toxicity profile
 - Low and high water solubility → rapid absorption and ↑ bioavailability
 - >90% bioavailability (IV and PO interchangeable)
 - No dependence on low gastric pH
 - Effectively penetrates CSF (50-60% plasma levels)
- Brain and eye too!
- >90% renal excretion

- Adverse effects
 - Very well tolerated
 - Even up to 1600 mg/day
 - O/L, reversible transaminase elevations

- Dose
 - 100-800 mg/d (max 1600 mg/d)
 - GI, reversible transaminase elevations
 - Elevated liver function tests (~13%)
 - May be dose-related
 - Skin reactions (6%)

Itraconazole

- Spectrum
 - Paracoccidioidomycosis, blastomycosis, histoplasmosis and sporotrichosis, cutaneous and mucosal candidiasis, Aspergillosis

- Adverse effects
 - Transient GI upset, dizziness, headache

- Pharmacokinetics
 - Extensively liver metabolized
 - Nonlinear serum PK

- clinical uses
 - Fungal infections caused by Aspergillus spp., Scedosporium spp., Fusarium spp.
 - Candida spp.
 - Cryptococcal meningitis, hepatosplenic candidiasis, Candida endophthalmitis

- Drug Interactions
 - Propensity and extent greater than fluconazole
 - Metabolized by CYP3A4

- IV itraconazole
 - Formulated in hydroxypropyl-β-cyclodextrin

- IV voriconazole
 - Increases solubility of itraconazole

- Mechanism of action
 - Flucytosine is deaminated to 5-fluorocytosine (5-FC)

- Resistance
 - Loss of permease necessary for cytosine transport

- Spectrum
 - Cryptococcus neoformans
 - Candida sp. (except C. krusei)

- Clinical uses
 - Cryptococcal meningitis, hepatosplenic candidiasis, Candida endophthalmitis

- Flucytosine (5-FC)

- Pharmacokinetics
 - Oral only
 - >95% bioavailability on empty stomach

- Dosing
 - 200 mg IV q12h x 4 doses, then 200 mg IV q24h followed by 200 mg PO q12h oral solution

- Adverse effects
 - Transient, dose related visual disturbances (30%)

- Resistance
 - Loss of permease necessary for cytosine transport

- Spectrum
 - Cryptococcus neoformans
 - Candida sp. (except C. krusei)

- Clinical uses
 - Cryptococcal meningitis, hepatosplenic candidiasis, Candida endophthalmitis

- Voriconazole

- Precautions (AND LIMITATIONS?)
 - Transient, dose related visual disturbances (30%)
 - Elevaded liver function tests (~13%)
 - May be dose-related
 - Skin reactions (6%)

- Dosing
 - Intravenous
 - 8 mg/kg IV q12h x 2 doses, then 4 mg/kg IV q12h
 - 40 kg – 100 mg PO q12h
 - 20 kg – 200 mg PO q12h

- Organ dysfunction
 - Renal disease
 - Oral dosing recommended in patients with CrCL<50 ml/min
 - IV vehicle, sulfobutyl ether-beta-cyclodextrin, accumulates

- Clinical uses
 - Cryptococcal meningitis, hepatosplenic candidiasis, Candida endophthalmitis

- Flucytosine

- Pharmacokinetics
 - Oral only
 - >95% bioavailability on empty stomach

- Dosing
 - Dose-dependent bone marrow suppression (↓ WBC, ↓ platelets)
 - GI (nausea/vomiting/diarrhea)
 - Renal/hepatic disease
 - Maintenance dose should be halved in patients with mild/moderate liver disease
Echinocandins

Adverse effects
- Clinical experience to date suggests that these drugs are extremely well-tolerated
- Most common AEs are infusion related:
 - Phlebitis/Thrombophlebitis (11.3-15.5%)
 - Mild to moderate infusion-related AE including:
 - Fever (3.6-26.2%)
 - Headache (6.11.3%)
 - Rash (0.4-0.9%)
 - Symptoms consistent with histamine release (2%)
- Most AEs were mild and did not require treatment discontinuation
- Most common laboratory AE
 - Asymptomatic elevation of serum transaminases (10.6-13%)

Echinocandins - spectrum

Highly Active
- C. albicans
- C. glabrata
- C. tropicalis
- C. krusei
- C. kefyr
- P. canii

Very Active
- C. parapsilosis
- C. guilliermondii
- A. fumigatus
- A. flavus
- A. terreus
- C. lusitaniae

Some Activity
- C. kimmitis
- B. dermatitidis
- Scrobicillium species
- P. variotii
- H. capsulatum

Very low MIC, with fungicidal activity and good in-vivo activity.

Only active against cyst forms, and probably only useful for prophylaxis.

How to Choose?

- **Spectrum**
 - Likely pathogens
 - Documented pathogens
 - Site of infection
 - Concomitant diseases
 - Hepatic/renal function
 - Toxicities
 - Drug Interactions
 - IV/PO
 - Cost

Understanding the Candida species

<table>
<thead>
<tr>
<th></th>
<th>Fluconazol e</th>
<th>Voriconazol e</th>
<th>Posaconazole*</th>
<th>Amphot B</th>
<th>Echinocandins</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>S</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>S</td>
</tr>
<tr>
<td>C. parapsilosis</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>S to R (7)</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>$ to D to R</td>
<td>$ to I</td>
<td>$ to I</td>
<td>$ to I</td>
<td>S</td>
</tr>
<tr>
<td>C. krusei</td>
<td>R to D to R</td>
<td>$ to I</td>
<td>$ to I</td>
<td>$ to I</td>
<td>S</td>
</tr>
<tr>
<td>C. lusitaniae</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$ to R (5)</td>
</tr>
</tbody>
</table>

Enzymatic activity, which might have therapeutic potential for man (in some cases in combination with other drugs).
Treatment of Candida sp. Infections

- **Unknown Candida sp.**
 - Fluconazole
 - Voriconazole
 - Echinocandins
 - Amphotericin B product
- **Known Candida sp.**
 - Based on species and susceptibility results
 - Comorbid conditions/Toxicities

Yeast cells and pseudohyphae in material from the oral cavity, KOH preparation, phase-contrast microscopy.

Aspergillosis Treatment

- **Risk factors**
 - granulocytopenia (↓ neutrophil numbers or function)
 - T-cell dysfunction
 - Hematologic and other malignancies
 - Organ allograft recipients
 - Immunosuppressive therapy
 - Corticosteroids
 - Chronic granulomatous disease
 - AIDS
 - Burn patients
- **Drug therapy options**
 - Amphotericin B product
 - Itraconazole
 - Echinocandins
 - Voriconazole

Methenamine silver (GMS) stained tissue section of lung showing dichotomously branched, septate hyphae of Aspergillus fumigatus.

Combination Antifungal Therapy

- **Advantages**
 - Enhanced rate and extent of killing (additivity, synergy)
 - Decrease in antifungal drug resistance
 - Increase in the spectrum of activity
 - Enhancement in the tissue distribution of the two drugs
 - Reduction in drug-related toxicity, particularly if the dosage of a toxic drug can be reduced
- **Disadvantages**
 - Decreased rate and extent of killing (antagonism)
 - Increase in drug-related toxicity
 - Increased risk of drug-drug interactions
 - Increased cost compared to monotherapy

Combination Antifungal Therapy: Benefits

- Improved clinical and microbiologic outcome
- Decreased toxicity
- Decreased likelihood of resistance
- Broader spectrum in empiric therapy
- Little objective clinical data

Medical Letter 2002;44:63-65

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage</th>
<th>AWP Cost/Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyenes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphotericin B deoxycholate</td>
<td>1-1.5 mg/kg/day IV</td>
<td>$17 - $33</td>
</tr>
<tr>
<td>Lipid-AMB (Abilene)</td>
<td>3-6 mg/kg/day IV</td>
<td>$136 - $151</td>
</tr>
<tr>
<td>ABLC (AmBisome)</td>
<td>5 mg/kg/day IV</td>
<td>$825</td>
</tr>
<tr>
<td>ABCL (Amphotec)</td>
<td>3-4 mg/kg/day IV</td>
<td>$336 - $448</td>
</tr>
<tr>
<td>Triazoles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluconazole</td>
<td>400 - 900 mg IV</td>
<td>$133 - $266</td>
</tr>
<tr>
<td>Itraconazole</td>
<td>200 - 600 mg PO</td>
<td>$14 - $106</td>
</tr>
<tr>
<td>Voriconazole</td>
<td>200 mg PO</td>
<td>$94 - $177</td>
</tr>
<tr>
<td>Echinocandins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caspofungin</td>
<td>70 mg IV</td>
<td>$490</td>
</tr>
<tr>
<td>Micafungin</td>
<td>30 mg IV</td>
<td>$335</td>
</tr>
<tr>
<td>Fungal Agents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphotericin B deoxycholate</td>
<td>1-1.5 mg/kg/day IV</td>
<td>$17 - $33</td>
</tr>
<tr>
<td>Lipid-AMB (Abilene)</td>
<td>3-6 mg/kg/day IV</td>
<td>$136 - $151</td>
</tr>
<tr>
<td>ABLC (AmBisome)</td>
<td>5 mg/kg/day IV</td>
<td>$825</td>
</tr>
<tr>
<td>ABCL (Amphotec)</td>
<td>3-4 mg/kg/day IV</td>
<td>$336 - $448</td>
</tr>
<tr>
<td>Caspofungin</td>
<td>70 mg IV</td>
<td>$490</td>
</tr>
<tr>
<td>Micafungin</td>
<td>30 mg IV</td>
<td>$335</td>
</tr>
</tbody>
</table>

Anti-Tuberculosis Agents

- **Combination Antifungal Therapy**
 - Fungi more difficult to diagnose, less amenable to treatment, and associated with highest attributable mortality compared to bacterial pathogens
 - Often consider combination therapy in refractory mycoses

- **Benefits**
 - Improved clinical and microbiologic outcome
 - Decreased toxicity
 - Decreased likelihood of resistance
 - Broader spectrum in empiric therapy

- **Little objective clinical data**
Antituberculosis Therapy

Drug therapy is the cornerstone of TB management.

Goals:
- Kill TB rapidly
- Prevent emergence of resistance
- Eliminate persistent bacilli from the host to prevent relapse

Drug therapy:
- First-line agents: greatest efficacy with acceptable toxicity
- Second-line agents: less efficacy, greater toxicity, or both
- If properly used, can achieve cure rate ~98%
- Increasing prevalence of multidrug-resistant TB (MDRTB)

Treatment Principles (cont.):

3 subpopulations of mycobacteria proposed to exist:
- Extracellular, rapidly dividing mycobacteria, often within cavities (10^7 to 10^9)
 - Killed most readily by INH > RIF > streptomycin > other drugs
 - Organisms residing within caseating granulomas (semi-dormant metabolic state; 10^5 to 10^7)
 - Activity of PZA > INH and RIF
- Intracellular mycobacteria present within macrophages (10^4 to 10^6)
 - RIF, INH, PZA and quinolones believed to be most active

Disease burden:
- Asymptomatic patients have an organism load of ~10^5 organisms
- Cavitary pulmonary TB has a load of 10^11 organisms
- As the number of organisms increases, likelihood of drug-resistant mutants increases
- Mutants found at rates of 1 in 10^6 to 1 in 10^8 organisms

Drug therapy regimens:
- Latent TB
 - Monotherapy, usually with isoniazid (INH)
 - Risk of selecting out resistant organisms is low
- Active TB
 - Combination therapy of at least 2 drugs, generally three or more
 - Rates for multiple drug mutations occur as an additive function
 - 1 in 10^10 (INH rate of 10^6 × RIF rate of 10^4)

Toxicities:
- Hepatotoxicity
 - Risk factors = multiple hepatotoxic agents, alcohol abuse
- Regimen and Dosing:
 - Duration varies
 - Combination of patient, extent of disease, presence of drug resistance, and tolerance of medications
 - Adherence is important (DOT)
 - Daily vs. TW
 - PO vs. IV vs. IM

First-Line Agents

- Rifampin
- Isoniazid
- Pyrazinamide
- Ethambutol
- Streptomycin

Second-line Drugs
- Rifabutin
- Quinolones
- Capreomycin
- Amikacin, kanamycin
- Para-aminosalicylic acid (PAS)
- Cycloserine
- Ethionamide

Early bactericidal activity: √
Sterilizing activity: □
Prevent emergence of resistance: △

- Rifampin
- Isoniazid
- Pyrazinamide
- Ethambutol
- Streptomycin
Isoniazid (INH)

- Inhibits mycolic acid synthesis
 - Long-chain fatty acids of the mycobacterial cell wall
 - Bactericidal against growing MTB
 - Bacteriostatic against nonreplicating MTB
- PO only
 - Well absorbed
- Metabolized in liver by N-acetyltransferase
 - Slow vs. fast acetylators
 - Half life 2-4 hrs vs. 0.5-1.5 hrs
 - ~68% Asian patients are rapid acetylators
 - Drug interactions more likely in slow acetylators
- Toxicities
 - ↑ serum transaminases (AST, ALT)
 - Neurotoxicity
 - Usually manifests as peripheral neuropathy → administer pyridoxine (vitamin B6) daily
 - ↑ risk alcoholics, children, diabetics, malnourished, dialysis patients, HIV+

Streptomycin

- Inhibits protein synthesis (aminoglycoside)
 - Bactericidal
 - Poor activity in acidic environment of closed foci
 - Not good sterilizing drug
- IM/IV
 - Renal excretion
 - Toxicities
 - Vestibular toxicity
 - Dizziness, problems with balance, tinnitus
 - Can be permanent
 - Nephrotoxicity
 - Tends to be mild and reversible

Rifampin

- Inhibits DNA-dependent RNA polymerase
 - Bactericidal (very effective)
 - Allows short course therapy (6-9 mos vs. ≥18 mos)
 - IV/PO
- Toxicities
 - ↑ hepatic enzymes (AST, ALT, bilirubin, alkaline phosphatase)
 - GI distress
 - Red-orange discoloration of body fluids
 - Rash
 - DRUG INTERACTIONS, DRUG INTERACTIONS, DRUG INTERACTIONS
 - Potent inducer of CYP450 metabolism (↓ concentrations of other drugs)

First Line Agents (cont.)

- Pyrazinamide
 - Mechanism unknown
 - Fatty acid synthase-1
 - Converted to pyrazinoic acid (active metabolite)
 - Bactericidal
 - PO only
 - Metabolized in the liver, but metabolites are renally excreted
- Toxicities
 - ↑ liver enzymes
 - Hyperuricemia
 - Nausea/vomiting

- Ethambutol
 - Inhibits cell wall components
 - Generally bacteriostatic
 - PO only
 - Renal excretion
 - Toxicities
 - Optic neuritis (dose-related)
 - Hyperuricemia

Second-Line Agents

Second Line Agents

- Rifabutin
 - Often used as an alternative to rifampin
 - Less potent inducer CYP450
 - Drug interactions still important
 - Cross resistance among rifamycins
 - PO only
 - Toxicities
 - Uveitis (ocular pain, blurred vision)

- Quinolones
 - Levofloxacin, moxifloxacin, gatifloxacin
 - Bactericidal against extracellular organisms and achieve good intracellular concentrations
 - IV/PO
 - Uses
 - MDR-TB
 - IV alternative
 - Well tolerated option
 - Toxicities
 - Nausea, abdominal pain
 - Headache, insomnia, restlessness
Second Line Agents

<table>
<thead>
<tr>
<th>Drug</th>
<th>Uses</th>
<th>Toxicities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capreomycin</td>
<td>MDR-TB</td>
<td>Injection pain, hearing loss, tinnitus, renal dysfunction</td>
</tr>
<tr>
<td>Para-amino salicylic acid (PAS)</td>
<td>Synthetic structural analog of aminobenzoic acid</td>
<td>Cross-resistance with aminoglycosides</td>
</tr>
<tr>
<td>Amikacin, kanamycin</td>
<td>MDR-TB</td>
<td>Cross-resistance with aminoglycosides</td>
</tr>
<tr>
<td>Amikacin, kanamycin</td>
<td>MDR-TB</td>
<td>Cross-resistance with aminoglycosides</td>
</tr>
<tr>
<td>Cycloserine</td>
<td>MDR-TB</td>
<td>Central nervous system effects, confusion, irritability, somnolence, headache, vertigo, seizures, Peripheral neuropathy</td>
</tr>
<tr>
<td>Ethionamide</td>
<td>MDR-TB</td>
<td>Nausea/vomiting, Peripheral neuropathy, Psychiatric disturbances, ↑ liver enzymes, ↑ glucose, Goiter with or without hypothyroidism, Gynecomastia, impotence, menstrual irregularities</td>
</tr>
</tbody>
</table>

Drug-Resistant TB

- **Acquired resistance**
 - Suboptimal therapy that encourages selective growth of mutants resistant to one or more drugs

- **Primary resistance**
 - Infection from a source case who has drug-resistant disease

- **Factors leading to suboptimal therapy**
 - Intermittent drug supplies
 - Use of expired drugs
 - Unavailability of combination preparations
 - Use of poorly formulated combination preparations
 - Inappropriate drug regimen
 - Addition of single drugs to failing regimens in the absence of bacteriologic control
 - Poor supervision of therapy
 - Unacceptably high cost to patient (drugs, travel to clinic, time off work)