
Respiratory infections Community acquired pneumonia: a review of common pathogens

Natalie Neu, MD

Respiratory tract anatomy

Community acquired pneumonia: CAP

- 5.6 million cases annually
- #1 cause of death due to infectious diseases in the U.S.
- \$9.7 billion dollars annually
- 3 groups for patient management
 - Outpatient, inpatient (non- ICU), ICU
- Etiology:
 - Streptococcus pneumoniae (#1)
 - "Atypical organisms"
 - Viral (e.g. RSV, influenza, adenovirus)
 - Gram negative
 - Other

CAP: general principles

- Presentation
- Etiology
- Specific organisms and pneumonia
 - Streptococcus pneumoniae
 - Mycoplasma
 - Chlamydia
 - Legionella
 - Pertussis

Pneumonia: presentation and working up the etiology

- Common complaints
 - Dyspnea, fever, cough (productive or not), chills, chest pain, myalgia, headache
- History
 - Age, co-morbidities, sick contacts, unusual exposures, social situation/support
- Physical exam findings
 - Rales, tactile fremitus, decreased breath sounds, rhonchi
- Radiology
 - Confirming the diagnosis; may or may not help narrow the diagnosis e.g. S. pneumonia: lobar; S. aureus: multilobar/abscess; Mycoplasma- diffuse interstitial

Bartlett, J. G. et al. N Engl J Med 1995;333:1618-1624

Table 2	≥.	Microbiologic Pathogens in	Community-				
Acquired Pneumonia.							

Microbial Agent or Cause	Prevalence (%)		
	North American studies*	British Thoracic Society†	
Bacteria			
Streptococcus pneumoniae	20-60	60-75	
Haemophilus influenzae	3-10	4-5	
Staphylococcus aureus	3-5	1-5	
Gram-negative bacilli	3-10	Rare	
Miscellaneous‡	3-5	_	
Atypical agents	10-20	_	
Legionella	2-8	2-5	
Mycoplasma pneumoniae	1-6	5-18	
Chlamydia pneumoniae	4-6	_	
Viruses	2-15	8-16	
Aspiration	6-10		

*Based on 15 published reports from North America. **A** None of these studies used techniques adequate to detect anaerobes in respiratory secretions; these organisms account for 20 to 30 percent of cases in some reports ****** Parishii is excluded but may account for up to 15 percent in recent reports from urban centers.**

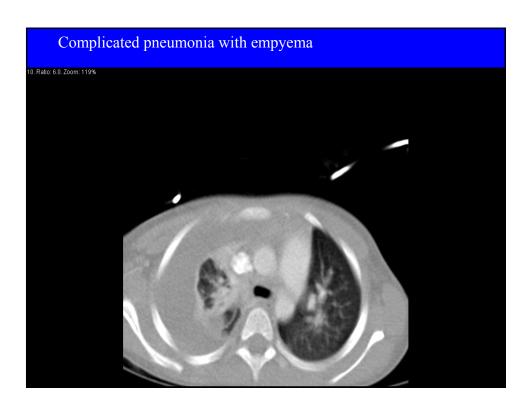
†Based on an analysis of 453 adults in a prospective study of community-acquired pneumonia in 25 British hospitals. ²⁰⁴⁰ Dashes indicate that the pathogen was not included in the study.

fincludes Monavella catarrhalis; group A streptococcus, and Neisseria meningizidis (each accounting for 1 to 2 percent of cases).

IDSA guidelines for adult CAP. CID 2000; 31 (Aug).

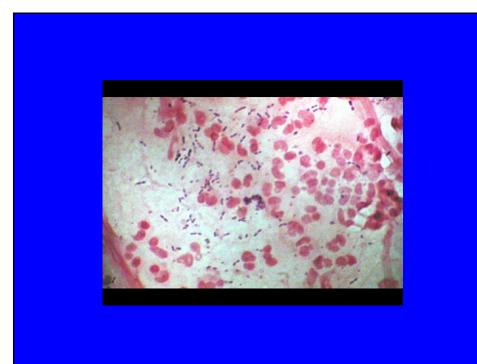
 Table 7.
 Epidemiological conditions related to specific pathogens in patients with selected community-acquired pneumonia.

Condition	Commonly encountered pathogen(s)
Alcoholism	Streptococcus pneumoniae and anaerobes
COPD and/or smoking	S. pneumoniae, Haemophilus influenzae, Moraxella catar- rhalis, and Legionella species
Nursing home residency	S. pneumoniae, gram-negative bacilli, H. influenzae, Staphylo- coccus aureus, anaerobes, and Chlamydia pneumoniae
Poor dental hygiene	Anaerobes
Epidemic legionnaires' disease	Legionella species
Exposure to bats or soil enriched with bird droppings	Histoplasma capsulatum
Exposure to birds	Chlamydia psittaci
Exposure to rabbits	Francisella tularensis
HIV infection (early stage)	S. pneumoniae, H. influenzae, and Mycobacterium tuberculosis
HIV infection (late stage)	Above plus P. carinii, Cryptococcus, and Histoplasma species
Travel to southwestern US	Coccidioides species
Exposure to farm animals or parturient cats	Coxiella burnetii (Q fever)
nfluenza active in community	Influenza, S. pneumoniae, S. aureus, Streptococcus pyogenes, and H. influenzae
Suspected large-volume aspiration	Anaerobes (chemical pneumonitis, obstruction)
Structural disease of lung (bronchiectasis, cystic fibrosis, etc.)	Pseudonomas aeruginosa, Burkholderia (Pseudomonas) cepa- cia, and S. aureus
njection drug use	S. aureus, anaerobes, M. tuberculosis, and S. pneumoniae
Airway obstruction	Anaerobes, S. pneumoniae, H. influenzae, and S. aureus


Clinical scenario 1

• Francisco is a 2 year previously well

NOTE. COPD, chronic obstructive pulmonary disease


- Presented with URI symptoms and fever to PMD in July
- Respiratory symptoms worsened, cxr revealed right sided pneumonia, WBC 24K with 80% PMN and 3% bands
- Initially treated with IV therapy without resolution in 4 days
- CT scan showed large right sided effusion

Streptococcus pneumoniae

- Gram-positive; oval or lancet-shaped, occur in pairs or short chains (diplococci)
- Capsular polysaccharide is most important virulence factor; approximately 85 capsular types
- Decreasing incidence but remains the **most commonly isolated pathogen** in patients with pneumonia
- Organism causes pneumonia, meningitis, otitis media, sinusitis, bacteremia, pericarditis, arthritis

Structure, Virulence Factors and Pathogenesis

- Capsular polysaccharide is most important virulence factor; approximately 85 capsular types
- Protein adhesins: allow binding to epithelial cells in the oropharynx
- Secretory IgA protease inhibits function of secretory IgA which normally binds bacteria to mucin to facilitate clearance from the respiratory tract
- Pneumolysin creates pores in and destroys ciliated epithelial cells
- Hydrogen peroxide reactive 02 intermediate causes tissue damage
- Teichoic acid, peptidoglycan and pneumolysin activate complement

S. Pneumoniae Diagnosis, treatment and prevention

- Diagnosis:
 - Blood culture, urine antigen test, sputum culture
- Treatment: Beta-lactam antibiotics
 - Risk factors resistance in *Streptococcus pneumoniae*
 - Age >65, receipt of β-lactam therapy within 3 months, alcoholism, immune suppression, multiple medical co-morbidities, exposure to child in daycare
 - PCN Resistance classified by breakpoints
 - Sensitive MIC ≤ 0.6
 - Intermediate MIC 0.1-1 mcg/ml
 - Resistant MIC $\geq 2 \text{ mcg/ml}$
 - Cephalosporins, vancomycin, macrolides, linezolid
- Prevention: Vaccines
 - Conjugated pneumococcal vaccine (Prevnar®)
 - 23 valent pneumococcal vaccine (Pneumovax®)

Clinical scenario 2

- Myra is a 21 year old medical student living in the dorm room studying for exams
- She goes to student health complaining of low grade fever, headache, non-productive cough, sore throat and general malaise
- Her exam reveals mild fine inspiratory ralesnothing impressive

Mycoplasma pneumonia

• The Dr sends her for an xray that reveals bilateral infiltrates

Mycoplasma

- Does not have a cell wall
- Cell membrane contains sterols not present in other bacteria
- Special enriched media needed for growth
- Laboratory cultures rarely done- diagnosis usually by serology (IgG)
- Bedside test- cold agglutinins

Mycoplasma- pathogenesis and immunity

- <u>P1- protein attachment factor</u>- facilitates attachment to sialic acid receptors of respiratory epithelium and RBC surface
- Remains extracellular
- Causes local destruction of cilia, interferes with normal airway clearance which leads to mechanical irritation and persistent cough
- Acts as a super antigen stimulating PNM's and macrophages to release cytokines (TNFα, IL1, and IL 6)

Walking pneumonia

- Lacks seasonal pattern, spread by droplet secretions
- Common in children and young adults
- Mild respiratory symptoms
- Complications: otitis media, erythema multiforme, hemolytic anemia, myocarditis, pericarditis, neurologic abnormalities
- Treatment: erythromycin

Erythema multiforme

Clinical scenario 3

- JM 10 week old infant born to a 16 year old mom
- Pregnancy history limited due to lack of prenatal care but baby born full term, no complications, left hospital 2 days
- Seen by pediatrician at 2 weeks old with eye discharge was given eye drops
- Returned to ER: RR 60, cough but no fever
- Xray done and bloods drawn

Chlamydia trachomatis xray

Chlamydial pneumonias:

trachomatis, pneumoniae, psittaci

- Intracellular parasites- use host high energy phosphate compounds
- Trilaminar outer membrane which contains LPS
- Two phase life cycle- Elementary body (infectious) and reticulate body (divides by binary fission in the host)

Chlamydial pneumonias

- Infect non-ciliated columnar cells
- Multiply in alveolar macrophages
- Perivascular and peribronchiolar infiltrates
- Clinical symptoms due to host immune response
- Immunity not long-lasting
- Diagnosis by serology- four fold rise in titer

C. trachomatis pneumonia

- Neonatal infection presents at 1-3 months of age
- Staccato-like cough, rapid respiratory rate
- NO FEVER
- Evaluation: minimal chest findings, xray hyperinflation and diffuse infiltrates, peripheral eosinophilia
- Associations: atherosclerotic heart disease
- Treatment: erythromycin
- Prevention: maternal screening

C. pneumoniae

- Single strain- TWAR
- Prolong incubation period
- Common in school age children
- Indolent course-sore throat, chronic cough, no fever
- Chest xray variable (lobar, diffuse, bilateral)
- Diagnosis: PCR and serology
- Treatment: macrolide, doxycycline, levofloxacin

C. psittaci

- History: Parrot exposure
- Mild clinical respiratory symptoms, fever, rash
- Concomitant symptoms: cns- headache, confusion, cranial nerve palsy, seizures; hepatitis; pericarditis
- Xray-consolidation, reticular nodular pattern, adenopathy
- Titers: > 1:64 diagnostic
- Treatment: doxy, tetracycline, erythromycin

Psittacosis

Clinical scenario 4

- Charlie is a 68 year old retired plumber who recently underwent a renal transplantation
- Felt great and was tinkering around his house updating his bathroom fixtures
- Came for follow up visit complaining of high fever, cough, chills and his wife said that he was acting confused at times
- Laboratory studies reveal WBC 35,000 with left shift, LDH >1000
- Chest xray reveals multilobar process

Legionella species

The 1976 Legionnaire's Convention, Philadelphia, PA

- 29/180 patients died due to pneumonia
- Identification of a gram negative bacilli
- Epidemiologic link to being in the lobby of Hotel A; historical link to 1966 outbreak in a psychiatric hospital
- National panic- worries about biologic and chemical warfare- media frenzy
- 6 months to identify the organism

Legionella pneumophila and micdadei

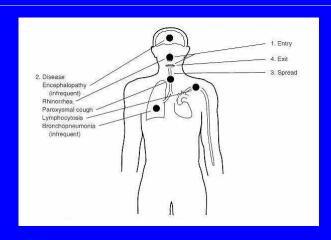
- 2-6% community acquired pneumonias
- Risk: immunocompromised, hospitalized, and outbreak situations
- Gram negative bacilli- don't stain with common reagents
- Fastidious and grow on supplemented media
- Organisms contaminate water sources: air conditioning systems and water tanks

Legionella: pathogenesis and immunity

- Intracellular pathogen- multiply in macrophages and monocytes
- Proteolytic enzymes kill the infected respiratory cells leading to formation of microabscesses
- Immunity- Cell mediated immunity (T cells) needed for immune response

Legionnaires disease

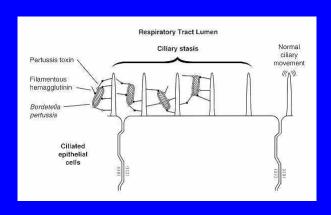
- Incubation period up to 10 days
- Clinical- influenza like illness or severe manifestation= pneumonia
- Fever (105), rigors, cough, headache
- Multilobular infiltrates and microabscesses
- Extrapulmonary manifestations: CNS, diarrhea, abdominal pain, nausea
- High white counts, abnormal liver, renal panel
- High mortality-15-20% depending on host

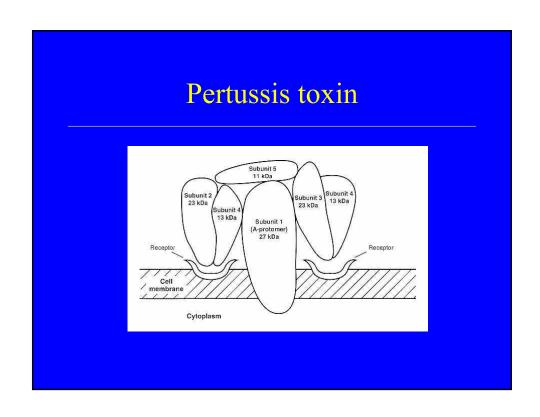

Legionella: Diagnosis, prevention and treatment

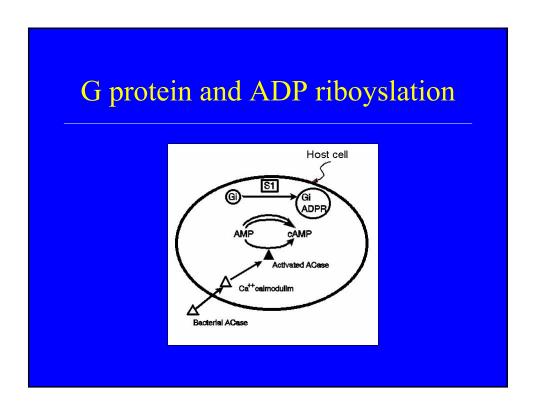
- Urine antigen detection assays- EIA for *L.pneumophila* only
- Serology >1:128 positive however late development of antibodies
- Culture on special media
- Treatment: macrolide or levofloxacin
- Prevention: hyperclorination, super heating, continuous copper-silver ionization

Clinical scenario 5 (Loyola Univ Medical Center)

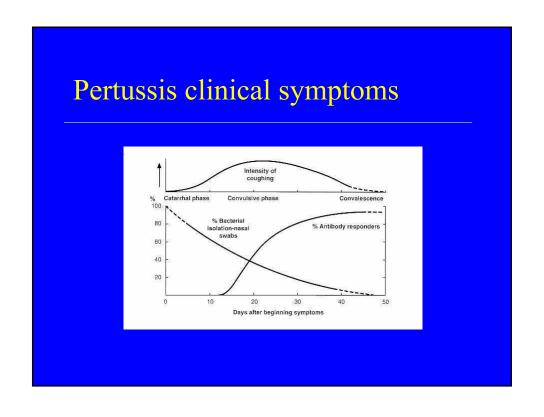
- Jerry, a 7 month old child, comes to clinic with a running nose, sneezing and slightly irritable
- Diagnosed with URI
- Returns 2 weeks later because he is turning blue with coughing spells. Spells are worse at night, seems to have spasms and then he "whoops" for air.
- Examination reveals mildly dehydrated, not distressed, clear lung exam
- WBC reveals leucocytosis with lymphocytosis

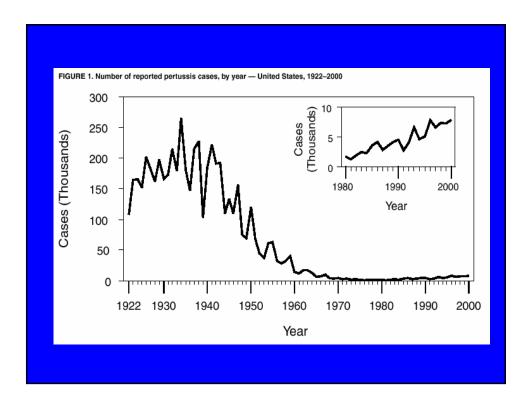

Bordetella pertussis

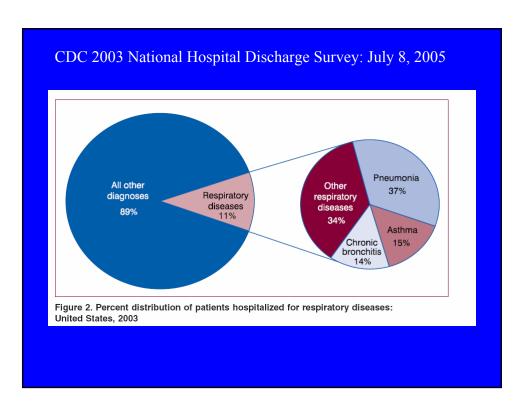


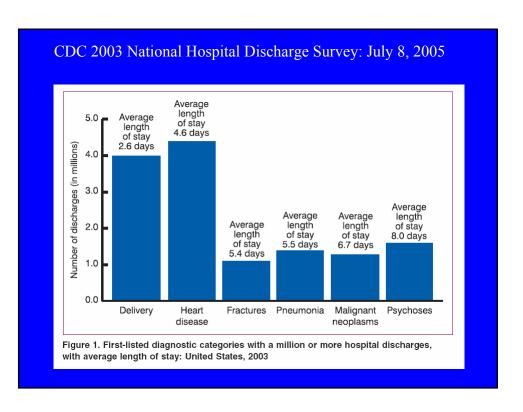

Bordetella pertussis "Whooping cough"

- Fastidious, gram negative coccobacilii
- Pertussis, parapertussis, and bronchiseptica
- Spread by respiratory droplets
- Rapid multiplication in mucus membrane
- No bacteremia
- Toxins cause local tissue damage


Binding and uptake by phagocytic cells




Toxin production and pathophysiology						
Pertussis toxin- ↑ CAMP	↑ secretions (paroxysmal stage))				
Adenylate cyclase and hemolysin toxin	Inhibit WBC chemotaxis, phagocytosis, and killing	Borderella 1500-2000 nm Upppolysaccharide				
Heat-labile toxin	Local tissue destruction Destroys ciliated cells, IL-1 (fever), NO (kills epithelial cells)	Amahandan dan dan dan dan dan dan dan dan da				
Tracheal cytotoxin		Filamentous hemagglutnin				
Lipid A and Lipid X	Activate alternative complement, cytokine release	120 kD 100 kD 200 kD Pertussis toxin Heal-labile toxin Adenylale cyclase toxin				



Pertussis

- Incidence declined due to vaccine
- Affects children under 1 and adults with waning immunity
- Incubation period 7-10 days
- Three stages of disease: catarrhal, paroxysmal, convalescent
- Diagnosis: special media- Bordet-Gengou- blood, charcoal, and starch. Nasopharyngeal culture
- Serologic testing: acute and convalescent titers

