HIV Diagnosis and Pathogenesis

Scott M. Hammer, M.D.

Laboratory Diagnosis of Acute HIV-1 Infection

- Patients with acute HIV infection may present to a health care facility before full antibody seroconversion
 - ELISA may be negative
 - ELISA may be positive with negative or indeterminant Western
- Plasma HIV-1 RNA level should be done if acute HIV infection is suspected
- Follow-up antibody testing should be performed to document full seroconversion (positive ELISA and WB)

HIV Diagnosis

- Consider in anyone presenting with symptoms and signs compatible with an HIV-related syndrome or in an asymptomatic person with a risk factor for acquisition
- Full sexual and behavioral history should be taken in all patients
 - Assumptions of risk (or lack thereof) by clinicians are unreliable

HIV-1 Virion

© Elsevier 2004. Infectious Diseases 2e - www.idreference.co

Laboratory Diagnosis of Established HIV Infection: Antibody Detection

- Screening
 - Serum ELISA
 - Rapid blood or salivary Ab tests
- Confirmation
 - Western blot
- Written consent for HIV Ab testing must be obtained and be accompanied by pre- and posttest counselling

HIV Life Cycle

Tat = transcriptional activator Rev = regulator of mRNA nuclear export

HIV-1: Genetic Organization

Determinants of Outcome: Selected Viral Factors

- Escape from immune response
 - Under immune selective pressure (cellular and humoral), mutations in gag, pol and env may arise
- Attenuation
 - nef deleted viruses associated with slow or long-term nonprogression in case reports and small cohorts
- Tropism
 - R5 to X4 virus conversion associated with increased viral pathogenicity and disease progression
- Subtypes
 - Potential for varied subtypes to exhibit differential transmissibility and virulence
 - » Potential for greater heterosexual spread of some subtypes

Established HIV Infection: Pathogenesis

- Active viral replication present throughout course of
- Major reservoirs of infection exist outside of blood compartment
 - Lymphoreticular tissues
 Central nervous system

 - Genital tract
- Virus exists as multiple quasispecies
 Mixtures of viruses with differential phenotypic and genotypic characteristics may coexist
- At least 10 X 10⁹ virions produced and destroyed each day
- $T_{\rm 1/2}$ of HIV in plasma is <6 h and may be as short as 30 minutes
- Immune response, chemokine receptor status and HLA type are important codeterminants of outcome

Host Factors in HIV Infection (I)

- · Cell-mediated immunity
 - Cytotoxic T cells
 - » Eliminate virus infected cells
 - » Play prominent role in control of viremia, slowing of disease progression and perhaps prevention of infection
 - T-helper response
 - » Vital for preservation of CTL response
- · Humoral immunity
 - Role in prevention of transmission and disease progression unclear

Host Factors in HIV Infection (II)

- · Chemokine receptors
 - CCR5-∆32 deletion
 - » Homozygosity associated with decreased susceptibility to R5 virus infection
 - » Heterozygosity associated with delayed disease progression
 - CCR2-V64I mutation
 - » Heterozygosity associated with delayed disease progression

 - CCR5 promoter polymorphisms

 » 59029-G homozygosity associated with slower disease
 - progression 59356-T homozygosity associated with increased perinatal transmission

Host Factors in HIV Infection (III)

- Other genetic factors
 - Class I alleles B35 and Cω4
 - » Associated with accelerated disease progression
 - Heterozygosity at all HLA class I loci
 - » Appear to be protective
 - HLA-B57, HLA-B27, HLA-Bω4, HLA-B*5701
 - » Associated with long-term non-progression
 - HLA-B14 and HLA-C8
 - » ?Associated with long-term nonprogression

Mechanisms of CD4+ Cell Death in HIV Infection

- HIV-infected cells
 - Direct cytolytic effect of HIV
 - Lysis by CTL's
 - Apoptosis
 - » Potentiated by viral gp120, Tat, Nef, Vpu
- · HIV-uninfected cells
 - **Apoptosis**
 - » Release of gp120, Tat, Nef, Vpu by neighboring, infected
 - Activation induced cell death

Therapeutic Implications of First and Second Phase HIV RNA Declines

- · Antiviral potency can be assessed in first 7-14 days
 - Should see 1-2 log declines after initiation of therapy in persons with drug susceptible virus who are adherent
- HIV RNA trajectory in first 1-8 weeks can be predictive of subsequent response
 - Durability of response translates into clinical benefit

Initiation of Therapy in Established HIV Infection: Considerations

- Patient's disease stage
 - Symptomatic status
 - CD4 cell count
 - Plasma HIV-1 RNA level
- Patient's commitment to therapy
- Philosophy of treatment
 - Pros and cons of 'early' intervention

Initiation of Therapy in Asymptomatic **Persons: Population Based Studies**

- Clinical outcome compromised if Rx begun when CD4
 <200

 Miller et al (EuroSIDA), Ann Intern Med 1999;130:570-577
 Hogg et al (British Columbia), JAMA 2001;286:2568
 Sterling et al (JHU), AIDS 2001;151:2251-2257
 Pallela et al (HDPS), Ann Intern Med 2003;138:620-626
 Sterling et al (JHU), Infect Dis 2003;188:1659-1665
 No virologic or immunologic advantage to starting at CD4
 S350 vs. 200-350; increased rate of virologic failure when starting at CD4 <200
 Cozzi-Lepri et al (ICONA), AIDS 2001;15:983-990
 Virologic responses comparable among groups with CD4
- Virologic responses comparable among groups with CD4 >200; slower decline to RNA <500 in those with RNA's >100,000 at baseline
 - Phillips et al (SHCS, EuroSIDA, Frankfurt), JAMA 2001;286:2560-2567
- Clinical outcome compromised if Rx begun when CD4 <200 or RNA >100,000
 - Egger et al (13 cohorts, >12,000 persons), Lancet 2002;360:119-129

Therapeutic Implications of Third Phase of **HIV RNA Decay: Latent Cell Reservoir**

- · Viral eradication not possible with current drugs
- Archive of replication competent virus history is established
- Drug susceptible and resistant
- · Despite the presence of reservoir(s), minimal degree of viral evolution observed in patients with plasma HIV RNA levels <50 c/ml suggests that current approach designed to achieve maximum virus suppression is appropriate

CD4 and HIV-1 RNA (II)

- · Good but incomplete surrogate markers
 - For both natural history and treatment effect
- · Thresholds are arbitrary
 - Disease process is a biologic continuum
 - Gender specificity of HIV RNA in early-mid stage disease needs to be considered
- · Treatment decisions should be individualized
 - Baseline should be established
 - Trajectory determined

HIV Resistance: Underlying Concepts

- Genetic variants are continuously produced as a result of high viral turnover and inherent error rate of RT
 - Mutations at each codon site occur daily
 - » Survival depends on replication competence and presence of drug or immune selective pressure
 - Double mutations in same genome also occur but 3 or more mutations in same genome is a rare event
 - Numerous natural polymorphisms exist

CD4 and HIV-1 RNA (I)

- Independent predictors of outcome in most studies
- · Near-term risk defined by CD4
- Longer-term risk defined by both CD4 and HIV-1 RNA
- Rate of CD4 decline linked to HIV RNA level in untreated persons

Pre-existence of Resistant Mutants

Viral replication cycles: 10⁹-10¹⁰/day

• RT error rate: 10⁻⁴-10⁻⁵/base/cycle

• HIV genome: 104 bp

- Every point mutation occurs 104-105 times/day
 - In drug naïve individuals
 - » Single and double mutants pre-exist
 - » Triple and quadruple mutants would be predicted to be rare

HIV Resistance: Underlying Concepts

- Implications
 - Resistance mutations may exist before drug exposure and may emerge quickly after it is introduced
 - Drugs which develop high level resistance with a single mutation are at greatest risk
 » e.g., 3TC, NNRTI's (nevirapine, efavirenz)
 - Resistance to agents which require multiple mutations will evolve more slowly
 - Partially suppressive regimens will inevitably lead to emergence of resistance
 - A high 'genetic barrier' needs to be set to prevent resistance
 - » Potent, combination regimens

HIV Drug Resistance: Definitions

- Genotype
 - Determines phenotype
 - Major and minor mutations for Pls
- Phenotype
- Drug susceptibility
- · Virtual phenotype
 - Result of large relational genotype and phenotype

Mutations Associated with nRTIs/ntRTIs

HIV Drug Resistance: Methodologies

- Genotyping
 Different platforms
 - » Dideoxy sequencing
 - » Gene chip
 - » Point mutation assays
- Phenotyping
 - Recombinant virus assays
- · Virtual phenotyping
 - Informatics

Nucleoside Analog Resistance TAM's (M41L, D67N, K70R, L210W, T215F/Y, K219Q/E/N) M184V K65R Confers non-ZDV NRTI resistance Confers 3TC Confer ZDV resistance thru decreased 3TC-TP resistance thru ZDV-MP excision thru decreased analog incorporation incorporation Decreases ZDV resistance thru decreased ZDV-MP Decreases ZDV resistance thru decreased ZDV-MP Antagonize K65R excision excision

