HIV Diagnosis and Pathogenesis

Scott M. Hammer, M.D.

HIV Diagnosis

- Consider in anyone presenting with symptoms and signs compatible with an HIV-related syndrome or in an asymptomatic person with a risk factor for acquisition
- Full sexual and behavioral history should be taken in all patients
 - Assumptions of risk (or lack thereof) by clinicians are unreliable

Laboratory Diagnosis of Established HIV Infection: Antibody Detection

- Screening
 - Serum ELISA
 - Rapid blood or salivary Ab tests
- Confirmation
 - Western blot
- Written consent for HIV Ab testing must be obtained and be accompanied by pre- and post-test counselling

Laboratory Diagnosis of Acute HIV-1 Infection

- Patients with acute HIV infection may present to a health care facility before full antibody seroconversion
 - ELISA may be negative
 - ELISA may be positive with negative or indeterminant Western blot
- Plasma HIV-1 RNA level should be done if acute HIV infection is suspected
- Follow-up antibody testing should be performed to document full seroconversion (positive ELISA and WB)

HIV-1 Virion

HIV Life Cycle

Tat = transcriptional activator
Rev = regulator of mRNA nuclear export
Established HIV Infection: Pathogenesis
- Active viral replication present throughout course of disease
- Major reservoirs of infection exist outside of blood compartment
 - Lymphoreticular tissues
 - Central nervous system
 - Genital tract
- Virus exists as multiple quasispecies
 - Mixtures of viruses with differential phenotypic and genotypic characteristics may coexist
- At least 10^9 virions produced and destroyed each day
- $T_1/2$ of HIV in plasma is <6 h and may be as short as 30 minutes
- Immune response, chemokine receptor status and HLA type are important codeterminants of outcome

Determinants of Outcome: Selected Viral Factors
- Escape from immune response
 - Under immune selective pressure (cellular and humoral), mutations in gag, pol and env may arise
- Attenuation
 - nef deleted viruses associated with slow or long-term nonprogression in case reports and small cohorts
- Tropism
 - R5 to X4 virus conversion associated with increased viral pathogenicity and disease progression
- Subtypes
 - Potential for varied subtypes to exhibit differential transmissibility and virulence
 - Potential for greater heterosexual spread of some subtypes

Host Factors in HIV Infection (I)
- Cell-mediated immunity
 - Cytotoxic T cells
 - Eliminate virus infected cells
 - Play prominent role in control of viremia, slowing of disease progression and perhaps prevention of infection
 - T-helper response
 - Vital for preservation of CTL response
- Humoral immunity
 - Role in prevention of transmission and disease progression unclear

Role of CTL’s in Control of Viremia
Host Factors in HIV Infection (II)

- Chemokine receptors
 - CCR5-Δ32 deletion
 » Homozygosity associated with decreased susceptibility to R5 virus infection
 » Heterozygosity associated with delayed disease progression
 - CCR2-V64I mutation
 » Heterozygosity associated with delayed disease progression
 - CCR5 promoter polymorphisms
 » 59029-G homozygosity associated with slower disease progression
 » 59356-T homozygosity associated with increased perinatal transmission

Host Factors in HIV Infection (III)

- Other genetic factors
 - Class I alleles B35 and Cu4
 » Associated with accelerated disease progression
 - Heterozygosity at all HLA class I loci
 » Appear to be protective
 - HLA-B57, HLA-B27, HLA-B8, HLA-B*5701
 » Associated with long-term non-progression
 - HLA-B14 and HLA-C8
 » Associated with long-term non-progression

Mechanisms of CD4+ Cell Death in HIV Infection

- HIV-infected cells
 - Direct cytopathic effect of HIV
 - Lysis by CTL's
 - Apoptosis
 » Potentiated by viral gp120, Tat, Nef, Vpu

- HIV-uninfected cells
 - Apoptosis
 » Release of gp120, Tat, Nef, Vpu by neighboring, infected cells
 » Activation induced cell death

The Variable Course of HIV-1 Infection

- Typical Progressor
- Rapid Progressor
- Nonprogressor

Phases of Decay Under the Influence of Potent Antiretroviral Therapy

- $T_{1/2} = 1$ d (productively infected CD4+ cells)
- $T_{1/2} = 2-4$ wks (macrophages, latently infected CD4+, release of trapped virions)
- $T_{1/2} = 6-44$ mos (resting, memory CD4+ cells)

Therapeutic Implications of First and Second Phase HIV RNA Declines

- Antiviral potency can be assessed in first 7-14 days
 - Should see 1-2 log declines after initiation of therapy in persons with drug susceptible virus who are adherent

- HIV RNA trajectory in first 1-8 weeks can be predictive of subsequent response
 - Durability of response translates into clinical benefit
Phases of Decay Under the Influence of Potent Antiretroviral Therapy

- $T_{1/2} = 1$ d (productively infected CD4's)
- $T_{1/2} = 2-4$ wks (macrophages, latently infected CD4's, release of trapped virions)
- $T_{1/2} = 6-44$ mos (resting, memory CD4's)

Initiation of Therapy in Established HIV Infection: Considerations

- Patient’s disease stage
 - Symptomatic status
 - CD4 cell count
 - Plasma HIV-1 RNA level

- Patient’s commitment to therapy

- Philosophy of treatment
 - Pros and cons of ‘early’ intervention

Initiation of Therapy in Asymptomatic Persons: Population Based Studies

- Clinical outcome compromised if Rx begun when CD4 <200
- Miller et al (EuroSIDA), Ann Intern Med 1999;130:570-577
- Hogg et al (British Columbia), JAMA 2001;286:2986
- Sterling et al (JHU), AIDS 2001;15:2351-2357
- Palella et al (HOPS), Ann Intern Med 2003;138:620-626
- Sterling et al (JHU), J Infect Dis 2003;188:1660-1666

- No virologic or immunologic advantage to starting at CD4 >350 vs. 200-350; increased rate of virologic failure when starting at CD4 <200
- Cozzi-Lepri et al (ICONA), AIDS 2001;15:983-990

- Virologic responses comparable among groups with CD4 >200; slower decline to RNA <500 in those with RNA’s >100,000 at baseline

- Clinical outcome compromised if Rx begun when CD4 <200 or RNA >100,000
- Egger et al (13 cohorts, >12,000 persons), Lancet 2002;360:119-129

Therapeutic Implications of Third Phase of HIV RNA Decay: Latent Cell Reservoir

- Viral eradication not possible with current drugs

- Archive of replication competent virus history is established
 - Drug susceptible and resistant

- Despite the presence of reservoir(s), minimal degree of viral evolution observed in patients with plasma HIV RNA levels <50 c/ml suggests that current approach designed to achieve maximum virus suppression is appropriate

Prognosis According to CD4 and RNA: ART Cohort Collaboration

Natural History of Untreated HIV-1 Infection

CD4 and HIV-1 RNA (I)

- Independent predictors of outcome in most studies
- Near-term risk defined by CD4
- Longer-term risk defined by both CD4 and HIV-1 RNA
- Rate of CD4 decline linked to HIV RNA level in untreated persons

CD4 and HIV-1 RNA (II)

- Good but incomplete surrogate markers
 - For both natural history and treatment effect
- Thresholds are arbitrary
 - Disease process is a biologic continuum
 - Gender specificity of HIV RNA in early-mid stage disease needs to be considered
- Treatment decisions should be individualized
 - Baseline should be established
 - Trajectory determined

MACS: CD4 Cell Decline by HIV RNA Stratum

HIV Resistance: Underlying Concepts

- Genetic variants are continuously produced as a result of high viral turnover and inherent error rate of RT
 - Mutations at each codon site occur daily
 » Survival depends on replication competence and presence of drug or immune selective pressure
 - Double mutations in same genome also occur but 3 or more mutations in same genome is a rare event
 - Numerous natural polymorphisms exist

Pre-existence of Resistant Mutants

- Viral replication cycles: 10^9-10^{10}/day
- RT error rate: 10^{-4}-10^{-5}/base/cycle
- HIV genome: 10^6 bp
- Every point mutation occurs 10^4-10^5 times/day
 - In drug naive individuals
 » Single and double mutants pre-exist
 » Triple and quadruple mutants would be predicted to be rare

Mellors et al: Ann Intern Med 1997;126:946-954
HIV Resistance: Underlying Concepts

- Implications
 - Resistance mutations may exist before drug exposure and may emerge quickly after it is introduced
 - Drugs which develop high level resistance with a single mutation are at greatest risk
 - e.g., 3TC, NNRTI's (nevirapine, efavirenz)
 - Resistance to agents which require multiple mutations will evolve more slowly
 - Partially suppressive regimens will inevitably lead to emergence of resistance
 - A high 'genetic barrier' needs to be set to prevent resistance
 - Potent, combination regimens

HIV Drug Resistance: Definitions

- Genotype
 - Determines phenotype
 - Major and minor mutations for PIs
- Phenotype
 - Drug susceptibility
- Virtual phenotype
 - Result of large relational genotype and phenotype database

HIV Drug Resistance: Methodologies

- Genotyping
 - Different platforms
 - Dideoxy sequencing
 - Gene chip
 - Point mutation assays
- Phenotyping
 - Recombinant virus assays
- Virtual phenotyping
 - Informatics
Nucleoside Analog Resistance

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Confer ZDV resistance thru ZDV-MP excision</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confers 3TC resistance thru decreased 3TC-TP incorporation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antagonize K65R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decreases ZDV resistance thru decreased ZDV-MP excision</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mutations Selected by PIs

Pyrophosphorolysis

Mutations in the GP41 Envelope Gene Associated With Resistance to Entry Inhibitors

Mutations Selected by NNRTIs

Progress in HIV Disease

HIV Pathogenesis

Monitoring Therapy