The Respiratory Viruses

Influenza, RSV, and Rhinoviruses

- Viruses that cause disease in the respiratory tract
- Some of the most common causes of symptomatic human infections
- Viral upper respiratory tract infections alone account for 26 million days of school absence and 23 million days of work absence in the US EACH YEAR!
Influenza virus

The Virus

- Orthomyxovirus Family
 - Influenza A, B, and C
- Enveloped viruses with single strand, negative sense RNA genomes
- RNA is segmented
 - 8 segments in influenza A and B
 - 7 segments in influenza C
Influenza Virus Proteins

PB1, PB2, PA: polymerase proteins

NA: neuraminidase protein - catalyzes removal of sialic acid residues and permits movement through mucous

HA: hemagglutinin - binds to sialic residues allowing viral attachment, mediates fusion of viral membrane with endosome

NP: nucleocapsid protein

M: M1 - matrix protein - provides rigidity
 M2 - ion channel present only in flu A

NS: nonstructural proteins

Influenza A Virus Replication
Antigenic Drift and Shift

• Two properties of the HA and NA proteins
 – Ability to mutate while preserving function
 – Segmented genome allows for reassortment
• Drift- why the vaccine needs to change every year and you’re never fully immune to flu
• Shift- why we get pandemics

• Drift
 – Ongoing mutations within RNA encoding HA and NA proteins resulting in amino acid changes which decrease immune recognition
 – Seen in all types of flu, but influenza A has the greatest rate of change
 – Drift is responsible for the year to year variations in flu outbreaks
Antigenic Drift

Pneumonia and Influenza Mortality for 122 U.S. Cities
Week Ending 02/15/03
• **Shift**

 – Appearance of a new viral subtype with novel HA and/or NA due to reassortment of circulating human strains with strains of animal origin

 – Occurs in nature only with influenza A
Influenza nomenclature

- Strains named for:
 - Type of flu (A or B)
 - Place of initial isolation
 - Strain designation
 - Year of isolation
 - HA and NA subtype
- Example: A/Texas/1/77/H3N2

Deadly consequences of shift

- 1918- “Spanish” flu H1N1; mortality 20-40 million worldwide; 500,000 US
- 1957- “Asian” flu H2N2; mortality 70,000 US
- 1968- “Hong Kong” flu H3N2; mortality 30,000 US
 - Modern circulating strain
 - Lower mortality than previous pandemics
 - Only HA changed
 - Similar strain circulated in 1890’s- elderly had some protection
Clinical Manifestations

- Classical
 - fever- up to 106!
 - chills
 - headache
 - myalgia
 - arthralgia
 - dry cough
 - nasal discharge

- Acute phase usually 4-8 days followed by convalescence of 1-2 weeks
Complications

• Primary- viral (influenza) pneumonia
 • otherwise healthy adults
 • rapid progression of fever, cough, cyanosis following onset of flu sx’s
 • CXR with bilateral ISIF, ABG with hypoxia

Secondary- bacterial

• Classic flu followed by improvement then sx’s of pneumonia
• Pneumococcus most common; also see staph aureus and H.flu
Complications (cont.)

- Myositis
 - Most common in children after flu B infection
 - Can prevent walking: affects gastrocs and soleus
- Neurologic
 - GBS (controversial)
 - transverse myelitis and encephalitis
- Reye syndrome

Diagnosis

- Virus isolation and culture
- Antigen Tests
 - Performed directly on patient samples
 - Rapid
 - EIA for flu A
 - DFA for flu B
- Hexaplex
 - RT PCR for flu A and B, RSV, parainfluenza
 - Sens 100%; spec 98%
Influenza vaccine

• Major public health intervention for preventing spread of influenza
• Currently use inactivated viruses circulating during the previous influenza season
• This year includes
 – H1N1, A/New Caledonia/20/99/H1N1
 – H3N2, A/Panama/2007/99/H3N2
 – B/Hong Kong/330/2001-like virus strain*
• Generally 50-80% protective
 – Less efficacious in the elderly but decreases hospitalization by 70% and death by 80%

Vaccine: who should get it

• Any individual > 6mos who is at risk for complications of influenza
 – chronic cardiac, pulmonary (including asthma), renal disease, diabetes, hemoglobinopathies, immunosuppression
• Residents of nursing homes
• Individuals who care for high-risk patients
• Healthy people over age 50*
• Children between 6 mos and 2 years*

* New ACIP recommendation
Treatment

• Amantidine/rimantidine
 – Symmetric amines
 – Inhibit viral uncoating by interfering with M2 protein
 – Approved for both treatment and prevention
 – If given within 48 hours of onset of symptoms, will decrease duration of illness by one day

• Neuraminidase inhibitors
 – zanamivir and oseltamivir
 – Mimic sialic acid residues blocking neuraminidase
 – Efficacious against both influenza A and B
Respiratory Syncytial Virus

- Paramyxovirus family
 - Paramyxovirus- parainfluenza viruses 1 and 3
 - Rubulavirus- mumps and parainfluenza type 2 & 4
 - Morbillivirus- measles
 - Pneumovirus- RSV
- Grows well in human cell lines and forms characteristic syncytia
- Two groups of isolates have been identified and are designated A and B- circulate simultaneously during outbreaks

Microbiology
General Features of Paramyxoviruses

- Enveloped- lipid bilayer obtained from host cell
- Genome- single-stranded negative sense RNA
- 10 Viral proteins
 - HN/H/G- attachment proteins
 - F- fusion protein
 - M- matrix protein
 - N- nucleoprotein
 - P/L- polymerase proteins
 - NS1/NS2- nonstructural proteins

Paramyxovirus Replication
• **Pathogenesis**
 – Inoculation occurs through the nose or eyes and spreads through respiratory epithelium
 – Viral replication in the peribronchiolar tissues leads to edema, proliferation and necrosis of the bronchioles. Collections of sloughed epithelial cells leads to obstruction of small bronchioles and air trapping.
 – Pneumonia, either primary RSV or secondary bacterial may also develop. Pathology of RSV pneumonia shows multinucleated giant cells.

Multinucleated giant cell formation in RSV pneumonia
• **Epidemiology**
 - Ubiquitous
 - Virtually all children infected by age 2
 - Severe illness most common in young infants
 • Boys are more likely to have serious illness than girls
 • Lower socioeconomic background correlates with worse disease
 • Major cause of lower respiratory tract disease in young children

Striking seasonality in temperate climates
 • Peaks in Winter
 • Summer respite
- Clinical Features- hallmark is bronchiolitis
 - Primary infection is usually symptomatic and lasts 7-21 days
 - Starts as URI with congestion, sore throat, fever
 - Cough deepens and becomes more prominent
 - LRT involvement heralded by increased respiratory rate and intercostal muscle retraction
 - Hospitalization rates can approach 40% in young infants
 - Reinfection in adults and older children
 - Rarely asymptomatic
 - Generally resembles a severe cold
• **Immunity**
 – Incomplete, reinfections are common
 – Cell-mediated immunity, as opposed to humoral, is important in protecting against severe disease.
 – Humoral immunity, in the absence of cell-mediated immunity, may predispose to more serious disease.
 – Vaccine experience

• **High risk groups**
 – Very young infants (<6 weeks) especially preemies
 – Older adults
 • Mortality from RSV pneumonia can approach 20% in this group
 – Children with bronchopulmonary dysplasia and congenital heart disease
 – Immunocompromised individuals
 • SCID
 • Transplant recipients
 • Hematologic malignancies
• Diagnosis
 – Clinical, during outbreak
 – Virus isolation and growth
 – Rapid diagnostic techniques
 • Immunofluoresence
 • EIA/RIA
 • PCR
 – Serology

• Treatment
 – Supportive care
 – Bronchodilators
 • Studies suggest inhaled epinephrine more efficacious than inhaled β-agonists
 – Ribavirin
 • Aerosol
 • High-risk individuals only
• Prevention
 – Gown and glove isolation in hospital
 – RSV immune globulin (RespiGam®) and palivizumab (Synagis®)- AAP recommendations
 • Children < 2 years with bronchopulmonary dysplasia and oxygen therapy in the 6 months prior to RSV season
 • Infants with gestational age < 32 weeks
 • Not approved for children with congenital heart disease
 • Being used anecdotally in immunocompromised individuals
 – No vaccine yet

Rhinoviruses

• Most common cause of the common cold
• Cause 30% of all upper respiratory infections
• Over 110 different serotypes- prospects for a vaccine are pretty dismal
Viruses associated with the common cold

<table>
<thead>
<tr>
<th>Virus Group</th>
<th>Antigenic Types</th>
<th>Percentage of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhinoviruses</td>
<td>100 types and 2 subtypes</td>
<td>30-40%</td>
</tr>
<tr>
<td>Coronavirus</td>
<td>3 or more</td>
<td>≥ 10</td>
</tr>
<tr>
<td>Parainfluenza viruses</td>
<td>4 types</td>
<td></td>
</tr>
<tr>
<td>Respiratory syncytial virus</td>
<td>2 types</td>
<td></td>
</tr>
<tr>
<td>Influenza virus</td>
<td>3 types</td>
<td></td>
</tr>
<tr>
<td>Adenovirus</td>
<td>47 types</td>
<td>10-15</td>
</tr>
<tr>
<td>Other viruses</td>
<td></td>
<td>30-35</td>
</tr>
</tbody>
</table>

Adapted from Mandell, 5th edition

Molecular Biology

- Members of the picornavirus family
- Also includes enteroviruses and hepatitis A
- Small, non-enveloped, single stranded RNA viruses
- Grow best at 33°C - temperature of the nose
- Most use ICAM-1 as receptor
• Enter through the nasal or ophthalmic mucosa
• Infect a small number of epithelial cells
• NO viremia; not cytolytic
• Symptoms most likely due to host immune response- especially IL-8

Epidemiology

• Kids are the reservoir for rhinoviruses and have the most symptomatic infections
• Worldwide distribution
• Seasonal pattern in temperate climates
 – Seen in early fall and spring
 – Less common in winter and summer
Clinical Manifestations

- You all know the symptoms
- Rhinovirus colds rarely have fever associated with them
- Most colds last about a week
- A non-productive cough following a cold can last up to 3 weeks- this is NOT bronchitis
Complications

• Sinusitis
 – 87% of individuals with colds will have CT evidence of sinusitis - this is mostly viral!
• Exacerbation of chronic bronchitis and asthma
• Distinguishing normal post-cold symptoms from true bacterial superinfection is tough

Treatment

• Tincture of time
• Symptomatic relief
 – Decongestants
 – Antihistamines
 – NSAIDs
• Randomized, controlled clinical trials have failed to show a benefit from vitamin C, zinc or echinacea
• Virus specific therapies not practically useful
DO NOT GIVE ANTIBIOTICS FOR THE COMMON COLD

Myths of the Common Cold

- susceptibility to colds requires a weakened immune system.
- Central heating dries the mucus membranes of the nose and makes a person more susceptible to catching a cold.
- Becoming cold or chilled leads to catching a cold.
- Having cold symptoms is good for you because they help you get over a cold, therefore you should not treat a cold.
- Drinking milk causes increased nasal mucus during a cold.
- You should feed a cold (and starve a fever).

* From J. Gwaltney and F. Hayden’s common cold website
Lifelong Lessons

• You can’t get flu from the flu vaccine
• You can’t get worse flu because you were vaccinated
• You don’t get a cold because you’re cold/not wearing a hat/wet
• There is no moral or immunologic superiority associated with not getting colds
• Stand firm- Don’t give out antibiotics for colds (or any other viral infections)