Antiviral Agents
Scott M. Hammer, M.D.

Challenges to the Development of Effective Antiviral Agents

- Myriad number of agents
- Need knowledge of replication at molecular level to define targets
 - Viruses as intracellular parasites make targeting more difficult to avoid host toxicity
- Lack of culture systems for some agents hinders development
- High through-put screening plus ‘rational’ drug design are both labor intensive and expensive

Diagnosis of Viral Infections

- Clinical suspicion
 - Is syndrome diagnostic of a specific entity?
 - Is viral disease in the differential diagnosis of a presenting syndrome?
- Knowledge of appropriate specimen(s) to send
 - Blood
 - Body fluids
 - Lesion scraping
 - Tissue
 - Proper transport is essential

Herpes Zoster

Progress in Antiviral Therapy

<table>
<thead>
<tr>
<th>virus</th>
<th>Acyclovir, famciclovir, valacyclovir, ganciclovir, cidofovir, formivirsen, valganciclovir</th>
</tr>
</thead>
<tbody>
<tr>
<td>HN-1</td>
<td>21 approved agents</td>
</tr>
<tr>
<td>Influenza</td>
<td>Amantadine, rimantadine, ribavirin, oseltamivir</td>
</tr>
<tr>
<td>Resp. syncytial virus</td>
<td>Ribavirin, RSV immune globulin, palivizumab</td>
</tr>
<tr>
<td>Hepatitis B</td>
<td>3TC, FTC, adebovir, tenofovir</td>
</tr>
<tr>
<td>Hepatitis C</td>
<td>pegIFN-ribavir</td>
</tr>
<tr>
<td>Papillomaviruses</td>
<td>IFN, tacediflur</td>
</tr>
<tr>
<td>JC virus</td>
<td>TCelebovir</td>
</tr>
<tr>
<td>Rhinoviruses</td>
<td>Tremacam (rsICAM-1)</td>
</tr>
</tbody>
</table>
Non-HIV Antiviral Therapy: Targets

- Herpesviruses
- Respiratory viruses
- Hepatitis viruses
- Others

Anti-Herpesvirus Agents

- Acyclovir
- Valacyclovir
- Famiclovir
- Ganciclovir
- Valganciclovir
- Foscarnet
- Cidofovir
- Formivirsen
- Trifluridine
- Idoxuridine

<table>
<thead>
<tr>
<th>Drug</th>
<th>Description</th>
<th>Active Moiety</th>
<th>Target Agents</th>
<th>Route of Admin</th>
<th>Toxicities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acyclovir</td>
<td>Acyclic nucleoside</td>
<td>Tri-phosphate</td>
<td>HSV, VZV</td>
<td>Oral, intravenous, topical</td>
<td>Renal, Neuro</td>
</tr>
<tr>
<td>Val-ACV</td>
<td>Ester prodrug of acyclovir</td>
<td>Tri-phosphate</td>
<td>HSV, VZV</td>
<td>Oral</td>
<td>Renal, Neuro</td>
</tr>
<tr>
<td>Penciclovir</td>
<td>Acyclic nucleoside</td>
<td>Tri-phosphate</td>
<td>HSV</td>
<td>Topical</td>
<td>Local irritation</td>
</tr>
<tr>
<td>Famciclovir</td>
<td>Ester prodrug of penciclovir</td>
<td>Tri-phosphate</td>
<td>HSV, VZV</td>
<td>Oral</td>
<td>Headache, nausea</td>
</tr>
<tr>
<td>Ganciclovir</td>
<td>Acyclic nucleoside</td>
<td>Tri-phosphate</td>
<td>CMV, HSV, VZV</td>
<td>Intravenous, oral, intraocular</td>
<td>Hematologic</td>
</tr>
<tr>
<td>Val-GCV</td>
<td>Ester prodrug of ganciclovir</td>
<td>Tri-phosphate</td>
<td>CMV</td>
<td>Oral</td>
<td>Hematologic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drug Description</th>
<th>Active Moiety</th>
<th>Target Agents</th>
<th>Route of Admin</th>
<th>Toxicities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foscarnet</td>
<td>Pyrophosphate analog</td>
<td>Parent drug active</td>
<td>CMV, HSV</td>
<td>Intravenous, Renal, metabolic</td>
</tr>
<tr>
<td>Cidofovir</td>
<td>Nucleotide analog</td>
<td>Di-phosphate</td>
<td>CMV, HSV, HPV, pos</td>
<td>Intravenous, Renal, ocular</td>
</tr>
<tr>
<td>Formivirsen</td>
<td>Antisense oligo-RNA binds to CMV mRNA</td>
<td>Parent drug active</td>
<td>CMV</td>
<td>Intraocular, Ocular</td>
</tr>
<tr>
<td>Trifluridine</td>
<td>Nucleoside analog</td>
<td>Tri-phosphate</td>
<td>HSV keratitis</td>
<td>Topical, Ocular</td>
</tr>
<tr>
<td>Idoxuridine</td>
<td>Nucleoside analog</td>
<td>Tri-phosphate</td>
<td>HSV keratitis</td>
<td>Topical, Ocular</td>
</tr>
</tbody>
</table>

FIGURE 53-6: Chemical structures of antiviral agents.
Acyclovir I
- Development represents a watershed in the field of antiviral chemotherapy
- Acyclic guanosine analog
- Active vs. HSV, VZV and modestly CMV
- Mechanism of action
 - Preferentially taken up by virally infected cells
 - Monophosphorylated by virally encoded thymidine kinases
 - Di- and triphosphorylation completed by cellular kinases
 - ACV-TP is the active moiety
 - Competitive inhibitor of viral DNA polymerase
 - Cellular DNA polymerases much less susceptible to inhibition
 - Leads to viral DNA chain termination

Acyclovir: Mechanism of Action

Anti-Respiratory Virus Agents
- Amantadine
- Rimantadine
- Zanamivir
- Oseltamivir
- Ribavirin

Amantadine and Rimantadine
- Tricyclic amines
- Active vs. influenza A only at clinically achievable concentrations
- Mechanism of action
 - Interference with function of viral M2 protein
 - M2 protein acts as an ion channel facilitating the hydrogen ion mediated dissociation of the matrix protein from the nucleocapsid
- Pharmacology:
 - Orally bioavailable
 - Amantadine: renal excretion
 - Rimantadine: hepatic metabolism and renal excretion
- Major toxicity
 - Neurotoxicity: amantadine > rimantadine
- Useful for treatment and prophylaxis of influenza A infections
- Resistance mediated by mutations in M2 coding region

Acyclovir II
- Pharmacology
 - Administered by oral, intravenous and topical routes
 - Oral bioavailability 15-30%
 - T1/2 3 hrs
 - Primarily renally excreted
- Toxicities
 - Headache, nausea
 - Renal
 - Neurologic
- Resistance
 - Mediated by mutations in viral thymidine kinase and/or viral DNA polymerase genes
 - TK-deficient and TK altered virus can be produced
 - Clinically significant infections can be caused by drug resistant HSV and VZV

FIGURE 11-7. Chemical structures of amantadine and rimantadine.
Influenza Virus Replication Cycle

Uncoating of Influenza Virus

Zanamivir and Oseltamivir I

Zanamivir and Oseltamivir II

Zanamivir and Oseltamivir III
Zanamivir and Oseltamivir IV

Indications
- Treatment of influenza A and B within 24-48 hrs of symptom onset
- Prophylaxis
- N.B.: Neither drug interferes with antibody response to influenza vaccination

Resistance
- Reports beginning to appear in literature

Ribavirin I

Synthetic nucleoside analog
- Active vs. broad range of RNA and DNA viruses
 - Flavi-, paramyxo-, bunya-, arena-, retro-, herpes-, adeno-, and posviruses
- Mechanism of action complex
 - Triphosphorylated by host cell enzymes
 - For influenza
 - Ribavirin-TP interferes with capping and elongation of mRNA and may inhibit viral RNA polymerase
 - For other agents
 - Ribavirin-MP inhibits inosine-5'-monophosphate dehydrogenase depleting intracellular nucleotide pools, particularly GTP

Anti-Hepatitis Agents

Hepatitis B
- Lamivudine
 - Nucleoside analog first developed for HIV
 - Lower dose used for HBV (100 mg/day)
- Adefovir dipivoxil
 - Nucleoside analog first developed for HIV but nephrotoxic at higher doses
 - Approved for HBV at lower dose (10 mg/day)
- Entecavir
 - Most recently approved anti-HBV agent

Hepatitis C
- Interferon-alpha (pegylated)
- Ribavirin

Ribavirin II

Pharmacology
- Aerosol and oral administration
- Hepatically metabolized and renally excreted

Major toxicity
- Anemia

Indications
- Aerosol treatment of RSV in children
- Oral treatment of HCV (in combination with pegylated IFN-alpha)

Interferons I

Part of cytokine repertoire
- Possess antiviral, immunomodulatory and antiproliferative effects

Types
- Alpha/Beta (leukocyte/fibroblast)
 - Coding genes located on chromosome 9
 - At least 24 subtypes of alpha, 1 of beta
- Gamma
 - Coding gene located on chromosome 12
 - 1 subtype

Interferons II: Mechanism of Action

Act by inducing an antiviral state within cells
- Bind to specific receptors on cell surface
- Receptor associated tyrosine kinases activated
 - Tyk2 and JAK1 for alpha and beta
 - JAK1 and JAK2 for gamma
- Cytoplasmic proteins (STAT) phosphorylated
 - Move to nucleus and bind to cis-acting elements in promoter regions of IFN inducible genes
Interferons III: Mechanisms of Action

- **Synthesis of 2'-5' oligoadenylate synthetase**
 - Activated by dsRNA
 - Convert ATP into a series of 2'-5' oligo(A)s
 - These activate RNase L which cleaves single stranded mRNAs

- **Synthesis of dsRNA-dependent protein kinase (PKR, eIF-2 kinase)**
 - PKR activated by dsRNA and autophosphorylated
 - In turn, phosphorylates alpha subunit of eukaryotic initiation factor 2
 - Protein synthesis is inhibited

- **Induction of a phosphodiesterase with inhibition of peptide chain elongation**
- **Synthesis of MxA protein which can bind to cytoskeletal proteins and inhibit viral transcriptases**
- **Induction of nitric oxide by gamma IFN in macrophages**

Interferons IV

- **Pharmacology**
 - Injected IM or SC
 - Renal excretion and inactivation in body fluids/tissues

- **Toxicities**
 - Flu-like symptoms
 - Hematologic effects
 - Leukopenia and thrombocytopenia
 - Neuropsychiatric effects
- **Antiviral indications**
 - IFN-alpha (pegylated) SC for HCV (in combination with ribavirin)
 - Intralvesional for condyloma acuminata
- Resistance can develop
 - Mutations in NS5A gene of HCV described

Passive Immunization for Viral Infections I

- **Human immune globulin**
 - Prevention of hepatitis A
 - Prophylaxis and treatment of enterovirus infections in neonates and in children with antibody deficiency
 - Treatment of B19 parvovirus infection in immunodeficient individuals

- **CMV immune globulin**
 - Prophylaxis of CMV in solid organ transplant recipients
 - Treatment of CMV pneumonia in combination with ganciclovir

- **Hepatitis B immune globulin**
 - Prophylaxis of hepatitis B infection

- **Rabies immune globulin**
 - Post-exposure prophylaxis for rabies (in combination with rabies vaccine)

Passive Immunization for Viral Infections II

- **Respiratory syncytial virus immune globulin**
 - Prevention of complications of RSV infection in young children

- **Palivizumab**
 - Humanized RSV monoclonal antibody
 - Prevention of complications of RSV infection in young children

- **Varicella-zoster immune globulin**
 - Prevention of varicella infection in immunocompromised children and adults within 96 hours of exposure

- **Vaccinia immune globulin**
 - Available from CDC for complications of smallpox (vaccinia) vaccination

Conclusions

- **Field of antiviral therapy has matured dramatically in past 30 years**
- **Greatest progress made for**
 - Herpesviruses
 - HIV
 - Respiratory viruses
 - Hepatitis viruses
- **Preventive vaccination remains the key to global control of viral infections**