Vaccines

Philip LaRussa
Division of Pediatric Infectious Diseases
Columbia University

• Historical Perspective
• Immunization Strategies
• Vaccine Safety
• Current Technology
• Routine Childhood & Adult Immunization Schedules
• Impact of Vaccines on Disease Burden
• Future Needs
• Background & Additional Information

Historical Perspective

• 1721, Lady Mary Montague
 – Observes variolation in Turkey & promotes its use in Europe
• 1774, Benjamin Jesty
 – Inoculates wife & 2 children with cowpox during a smallpox epidemic
 – Children are protected 15 years later after deliberate inoculation with smallpox
• 1796, Jenner
 – Milkmaids who had cowpox (vaccinia?) were immune to smallpox
 – Inoculated fluid from cowpox lesions into the skin of smallpox susceptible people (calf lymph-derived vaccinia virus)
 – “1st” use of a less virulent related species to protect against an exclusively human pathogen

• 1885: Louis Pasteur vaccinates Joseph Meister with rabies vaccine
 – Air-dried infected rabbit spinal cord:
 • started with avirulent virus, then proceeded with a series of more virulent strains
 – Coins “vaccination” in honor of Jenner
• 1955, Salk:
 – formalin-inactivated polio vaccine (IPV)
• 1962, Sabin:
 – Live attenuated polio vaccine (OPV, TOPV)
Immunization Strategy

- **Prevention of infection vs. symptoms**
- **Temporary vs. Long-lasting Immunity**
 - Passive protection: specific antibodies
 - Immediate Protection, but $t_{1/2} \approx 27$ days:
 - Antitoxins
 - Antibodies to Tetanus, Diphtheria, Botulinum toxins
 - Antisera to specific pathogens:
 - Hepatitis B, Varicella, Rabies, RSV
 - Pooled Human Immune Globulin: not specific
 - Immune Serum Globulin & Intravenous IG
 - Active: vaccination (Lag time, but long-lasting)
 - Active - Passive (HBIG+Hep B vac.; RIG+Rabies vac.)
- **Preventative (Polio) vs. Post-exposure (Rabies)**

Target Populations for Immunization

- **High Risk Groups Only (Rabies, Varicella in some countries)**
 - No effect on disease burden in general population
 - Vaccine must be highly effective
 - Must be able to reach all members of group
 - Less expensive in the short term
- **Universal Immunization (Polio, Rubella, Varicella in USA)**
 - Diminishes disease burden in general population
 - Pre-emptive immunization/ eventual high risk groups
 - Decreases risk of exposure
 - Planned access to target population
 - More cost-effective in long term
 - Requires extremely safe vaccines

Immunization of High Risk Groups

- **Travel**
 - Polio, Hepatitis A, Diphtheria, Japanese Encephalitis, Meningococcus, Yellow fever, Typhoid,
- **Occupation:**
 - Hepatitis B, Rabies, Anthrax, Plague, Rubella & Varicella
- **Age, illness, immunosuppression**
 - High risk for invasive pneumococcal disease:
 - Children < 6 years (Pneumococcal conjugate vaccine)
 - Elderly, high risk kids ≥ 6 years (Pneumococcal polysaccharide vaccine)
 - Influenza: elderly, or cardiac or pulmonary disease
 - Severe varicella (live attenuated varicella vaccine):
 - leukemic children & HIV-infected kids with CD4 ≥ 25
 - HIV-infected children [Inactivated polio vaccine]

Administration

- **Route**
 - Mimic route of natural infection: Oral polio vaccine, Live attenuated Intranasal Influenza vaccine
 - Parenteral (Intramuscular, subcutaneous)
- **Age at immunization**
 - Age distribution of natural infection:
 - In pre-vaccine era: $\geq 60\%$ of invasive H.influenzae type b infections occurred at ≤ 18 months of age
 - Age-dependent immune response:
 - Polysaccharide antigens (HIB, Pneumo & Meningococcus) are poorly immunogenic at ≤ 2 years of age
 - Ability to access population to be immunized:
 - Hepatitis B & rubella vaccines in infants vs. adolescents

Immune Response to Immunization

- **Protection vs. Sensitization**
- **Local vs. Systemic immunity:**
 - Mucosal surfaces (gut, respiratory, genital-urinary tracts, eye) vs. intravascular space
- **Antibody Response:**
 - T-cell dependent & T-cell independent antigens stimulate naive B cells to secrete epitope specific antibodies:
 - Prevent attachment to receptors
 - Inactivate toxins
 - Neutralize live viruses
 - Opsonization
- **Cell-mediated Response:**
 - T-cell response → maturation of naive to mature cytotoxic T cells → lyse infected host cells displaying pathogen-specific antigens on their surface in the context of MHC-I molecules

Immunization of High Risk Groups

- **Travel**
 - Polio, Hepatitis A, Diphtheria, Japanese Encephalitis, Meningococcus, Yellow fever, Typhoid,
- **Occupation:**
 - Hepatitis B, Rabies, Anthrax, Plague, Rubella & Varicella
- **Age, illness, immunosuppression**
 - High risk for invasive pneumococcal disease:
 - Children < 6 years (Pneumococcal conjugate vaccine)
 - Elderly, high risk kids ≥ 6 years (Pneumococcal polysaccharide vaccine)
 - Influenza: elderly, or cardiac or pulmonary disease
 - Severe varicella (live attenuated varicella vaccine):
 - leukemic children & HIV-infected kids with CD4 ≥ 25
 - HIV-infected children [Inactivated polio vaccine]
Immune Response to Immunization

• Primary response
 – 1st exposure to the antigen
 – 7-10 day lag time between exposure and production of antibody and cell-mediated responses
 – Initial antibody response is IgM, later switch to IgG
 – Establish populations of memory T & B cells

• Secondary response
 – Repeat exposure to the antigen (or to the pathogen)
 – Shortened lag time between exposure and production of antibody and cell-mediated responses
 – Antibody response is almost all IgG
 – Rapid expansion/ Memory T & B cell populations

Current Technology

• Inactivated whole organism:
 – Whole cell Pertussis, eIPV, Hepatitis A, Rabies, Influenza(disrupted), plasma-derived Hepatitis B (no longer available in US)

• Live organism from a related or different species:
 – Vaccinia, Bacille Calmette-Guerin (BCG, also attenuated by serial passage)

• Live attenuated organism:
 – Oral Polio, Measles, Mumps, Rubella, Varicella, Cold-adapted Influenza, Yellow fever
 – Attenuated by passage in tissue culture

• Toxoids: inactivated Diphtheria, Tetanus toxins

• Combination Vaccines:

Current Technology

• Specific subunit/antigen(s), extracted and purified:
 – Acellular Pertussis Vaccines:
 • PT (Pertussis toxoid), FHA (filamentous hemagglutinin), Pertactin, Agglutinogens
 – Polysaccharides (T-cell independent antigens):
 • Hæmophilus(no longer available), Meningococcus, Pneumococcus
 – Influenza surface glycoproteins (HA, NA)
 – Conjugated antigens (T-cell dependent):
 • HiB: PRP-D, PRP-T, PRP-GMP, HBoC(crm197)
 • Pneumococcal Conjugate:
 – CRM 4V: 4, 6B, 9V, 14, 19F, 23F, 18C
 • Meningococcus A, C, W-135 & Y conjugated to diphtheria toxoid

Current Technology

• Recombinant antigens: HBsAg/ yeast

• Virus-like particles:
 – Major capsid proteins of human papillomavirus serotypes 6, 11, 16 & 18 expressed in eucaryotic cells
 – Quadrivalent Vaccine efficacy:
 • 99-100% vs HPV 16/18 related Cervical Intraepithelial neoplasia (CIN) 2/3 in uninfected women
 • 27% efficacy in women who are recently infected
 • No efficacy in those with established infection
 • To be licensed for use in females 9-26 years in 2006
 – Males and a bivalent 16/18 vaccine later on
 – Younger age groups to follow

Establishing Causal Link: Adverse Event and Vaccine

<table>
<thead>
<tr>
<th>Unique lab result</th>
<th>Illness or Syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique clinical syndrome</td>
<td>Yes</td>
</tr>
<tr>
<td>Epidemiologic study (VMERS = Blinded cell “a”)</td>
<td>Vaccination</td>
</tr>
<tr>
<td>Rate in vaccinated = a/c</td>
<td>Rate in unvaccinated = d/b</td>
</tr>
</tbody>
</table>

Current Technology

• Quadrivalent Vaccine efficacy:
 – 99-100% vs HPV 16/18 related Cervical Intraepithelial neoplasia (CIN) 2/3 in uninfected women
 – 27% efficacy in women who are recently infected
 – No efficacy in those with established infection
 – To be licensed for use in females 9-26 years in 2006
 – Males and a bivalent 16/18 vaccine later on
 – Younger age groups to follow
Adjuvants

- Non-pathogen related additives that improve immunogenicity
- Aluminum salts are most common
 - Hepatitis b vaccine, tetanus and diphtheria toxoids
- Mechanisms of action?
 - Formation of an antigen depot at the inoculation site
 - Water/oil emulsions & alum
 - Mobilization of T cell response:
 - Protein carriers, polyA/polyU
 - Up-regulation of Ig receptors on B cells:
 - B-cell mitogens, antigen polymerizing agents
 - Increased uptake by Antigen-presenting cells:
 - MDP (muramyl dipeptide) derivatives, LPS, Lipid A
 - Cytokine induction & secretion

Routine Adult Immunizations

- Diphtheria & Tetanus boosters every 10 years
 - Pertussis may be added to the adolescent & adult schedule
- Influenza A/B
 - Yearly if > 55 years or high risk
 - Eventually: all adults regardless of age
- Pneumococcal polysaccharide (23-valent)
 - High risk adults
 - ≥ 65 years
 - Future use of an “adult” conjugate vaccine???
- Hepatitis B: if high risk
 - If not immune:
 - Varicella, Rubella
 - Measles & Mumps: if born after 1956

Most Pressing Future Needs

- HIV
- Malaria
- Tuberculosis:
 - Improved BCG vaccine: rBCG30
 - Contains an extra copy of the major secretory protein (Ag85b) → improved immunogenicity & protection in animal models
 - Phase I clinical trials in humans completed
 - Prime-Boost strategy:
 - Prime with BCG
 - Boost with MVA (Modified Vaccinia Ankara) vector containing the gene for TB antigen 85A
 - More robust CD4 response than either vaccine alone

Malaria, still on the horizon?

- Unique Challenge for Immunization:
 - Multiple species:
 - P. falciparum most important
 - also P. vivax, ovale, malarie
 - Multiple life cycle stages:
 - Sporozoites, (liver-stage schizonts), merozoites, blood stages, gametocytes
 - Antigens are polymorphic and/ or undergo clonal variation
 - Constant exposure to the pathogen:
 - “natural immunity” – chronic low-grade infection with constant exposure to changing antigens
Malaria, still on the horizon?

- Approaches to vaccine development
 - Irradiated sporozoite vaccine = “gold standard”
 - Stage specific recombinant antigens:
 - Circumsporozoite proteins (CSP):
 - RTS.S: segment of tandem-repeat region of CSP + flanking T cell epitopes + hepatitis b surface antigen expressed in yeast + 3-component adjuvant
 - Merozoite surface protein 1 (MSP1,)
 - RBC schizont antigen (SERA)
 - Gametocyte antigens (Pf625)
 - Multiple Antigen Peptides (MAPs)
 - Strong adjuvants

- Inadequate Long-term protection:
 - Failure to induce adequate memory T-cell responses?
 - Will prime-boost strategies work better?

- Additional references:
 - Targett, Trends in Parasitology, 2005
 - Okie, NEJM, 2005

Historical Perspective

- 1886, Salmon/ Smith: killed hog cholera “virus” vaccine (salmonella)
 - led to killed vaccines for typhoid, cholera & plague
- 1909, Smith: inactivated diphtheria toxin (toxoid) protects guinea pigs
 - led to diphtheria & tetanus toxoid vaccines for humans
- 1927, Calmette & Guerin: BCG
 - attenuated by passage in beef bile over 13 years of Mycobacterium bovis
- 1931, Goodpasture: chorioallantoic membrane/hen’s egg
 - safe, reliable method for growing viruses for vaccines
- 1937, Live attenuated yellow fever vaccine
 - passage in mouse brain & chorioallantoic membrane/hen’s egg (17D strain)
- 1955, Salk: formalin-inactivated polio vaccine (IPV)
- 1962, Sabin: Live attenuated polio vaccine (OPV, TOPV)

Vaccination Against Smallpox: Vaccinia virus

JAMA, June 9, 1999-vol.281(22):2127-37

Current Technology

- Recombinant L-OspA Lyme vaccine:
 - No longer available
 - E. coli transformed with plasmid containing OspA gene
 - Lipid moiety added after translation
 - 30 ug of purified antigen adsorbed to aluminum hydroxide
 - Production of antibody to spirochete outer surface lipoprotein expressed in the tick phase
 - Antibody-mediated killing in the tick

Additional Background Slides
Inactivated Influenza Vaccines

- **Current Technology:**
 - Live reassortant viruses consisting of high growth virus and vaccine candidates containing the selected hemagglutinins and neuraminidase components which are then grown on embryonated chick eggs.
 - Vaccine viruses are then inactivated and detergent-disrupted.

- **Components of the 2005-6 vaccine:**
 - A/California/7/2004 (H3N2)-like
 - A/New Caledonia/20/99 (H1N1)-like
 - B/Shanghai/361/2002
 - Selected because of growth properties and because they are representative of strains likely to circulate in the US during the 2005–06 season.
 - Since Influenza A (H1N2) viruses are a reassortant of A(H1N1) & (H3N2) viruses, antibodies directed against A (H1N1) and A (H3N2) vaccine strains provides protection against circulating A (H1N2).

Future Influenza Vaccines

- **Example of Reverse Genetics Technique for production of Inactivated Influenza Vaccines:**
 - Extract RNA from master vaccine strain (H1N1) & candidate wild-type strains (e.g. H5N2, H7N2, H5N1, H5N8)
 - Amplify (RT-PCR) genes for HA & NA from wild-type strains & “backbone” genes from master vaccine strain (Polymerase complex genes, etc.)
 - Clone each into plasmids & transfect 293T cells
 - Collect reassortant viruses (rH5N1,…containing HA & NA genes from wild-type strains & backbone genes from master vaccine strain)
 - Infect ECE (embryonated chick eggs) or immortalized cell lines like Marcus Darby Canine kidney cells (MDCK)
 - Disrupt cells, collect, inactivate vaccine virus
 - Can modify this technique for cold-adapted live attenuated vaccines

Selected References:
- Lee, et. al. Vaccine, 2004
- Webby, et. al. Lancet, 2004
- Nicolson, et. al. Lancet, 2005

Rotavirus Vaccine

- **RotaTeq Vaccine Study:**
 - Pentavalent bovine-human reassortant vaccine
 - VP7 genes of serotypes G1, G2, G3, G4 and P-type P1A
 - 70,000 placebo-controlled study:
 - 70% efficacy vs. any vaccine-serotype-related disease
 - 98% vs. severe disease
 - 85, 94, 96% ↓ in office visits, ED & hospitalizations
 - Intussusception:
 - 6 & 5 cases in the overall vaccine & placebo groups
 - 0 & 1 in vaccine & placebo groups after the 1st dose

Down the Road

- **Viral Vectors:**
 - Vaccinia:
 - good cytotoxic T-cell response (CTL)
 - pre-existing immunity to vaccinia limits use
 - primary response to vector limits response to booster doses of vectored vaccine
 - Occasionally, poor responses to inserted antigens
 - Canarypox, Adenovirus, Baculovirus
 - Varicella-Hepatitis B

On the Horizon

- **New Combination Vaccines:**
 - Tdap (Tetanus-Low dose diphtheria-acellular pertussis)

- **Maternal Immunization/neonatal disease**
 - Tetanus
 - Group B Streptococcus:
 - Capsular Polysaccharides (Ia, Ib, II, III, IV) conjugated to tetanus toxoid
 - “Universal” surface protein(s) vaccine covering all serotypes?
 - Live attenuated Dengue type 1-4 vaccines
 - New live attenuated rotavirus vaccine

- **Replicons:**
 - RNA viruses engineered to consist of a virus coat housing a genome with structural genes replaced by gene for the immunizing antigen:
 - Infection of host cell
 - Large quantities of mRNA for the desired antigen
 - No replication of parent virus (no structural genes)
• Bacterial mutants as vectors or attenuated vaccines
 – BCG, Salmonella, Shigella, Listeria
 • Auxotrophic mutant Shigella:
 – invasion of target cell but can’t replicate without a key nutrient
 – dies, releasing episomal plasmid DNA coding for desired antigen
 • Auxotrophic mutant BCG & M. tuberculosis (MTB)
 – defect in purine synthesis pathway → unable to replicate in & lyse macrophages
 – immunized guinea pigs protected after challenge with virulent MTB
 • Salmonella auxotrophs expressing IL-2
 – protection of immunized mice after intraperitoneal challenge ←
 Nitric oxide & IFN-γ production by peritoneal cells

• Peptides:
 – As the Immunogen:
 • B-cell epitopes:
 – Conserved
 – B cells usually respond to 3D shape of the epitope
 • T-cell epitope:
 – MHC-restricted: Multiple epitopes for major haplotypes?
 – T cell epitopes are usually linear sequences of aa’s
 – As the Carrier: should elicit T-cell help

• Potential adjuvants under evaluation:
 • Monophosphoryl lipid A
 • MF59 (emulsion of oil & surfactants)
 • SAF-1 (oil based emulsion of MDP + non-ionic block copolymers)
 • Saponin derivatives
 • Polymers (polyphosphazene)
 • Bacterial toxins (cholera & E. coli HL)
 – Orally cholera toxin → Th2 response → IgG1, IgE, mucosal IgA
 • Cytokines:
 – IL-4 → mucosal IgA & IgG
 – IL-4 → type 2 T-cell response (Th2/Tc2) → potent Ig production
 – IL-12 → type 1 T-cell response (Th1/Tc1) → potent γ-IFN & cytotoxic T-cell responses

• Delivery Systems:
 – Liposomes & Microcapsules
 • Polymers surrounding antigens
 • PLGA (disposable suture material)
 • Potential uses:
 – Prolonged degradation ⇒ fewer doses for primary immunization
 – Oral vaccines: protection from stomach acidity & selective uptake by M cells in Peyer’s patches

• Nasal & Oral Vaccines
 – Mucosal routes → mucosal immune responses
 – Respiratory & enteric pathogens
 – Examples:
 • Oral cholera vaccines:
 – Cholera toxin B subunit/ Inactivated whole cell(B-WC)
 – Live attenuated deletion-mutant strains
 – Bivalent(O1/O139) B subunit/Inactivated whole cell
 • Oral vaccines for enterotoxigenic E. coli
 – Antibody to Cholera toxin B subunit cross-reacts with E. coli LT-B (heat labile toxin)

• Edible Plant Vaccines:
 – Transgenic plants expressing protein antigens:
 • Phase I/II trials of transgenic potatoes expressing the binding subunit of cholera toxin: safe & immunogenic
 • Phase I/II trials of transgenic potatoes expressing HBsAg as a booster after traditional vaccine
 – Infection of edible plants with chimeric plant viruses expressing the antigen of choice on its surface
 – Effect of cooking on immunogenicity in humans?
Down the Road

- **Nucleic Acid Vaccines (Naked DNA):**
 - Bacterial plasmids carrying:
 - Genes encoding immunizing antigen or replication-defective viral vectors
 - Strong viral promoter
 - Intramuscular injection
 - Generate MHC-I restricted CTL responses
 - Antigen is produced in mammalian cells:
 - More appropriate antigen conformation

Key for Vaccine Abbreviations

- BCG: Bacille Calmette-Guérin vaccine
- CRM197: nontoxic mutant diphtheria toxin
- DTaP: Diphtheria, Tetanus, Pertussis (acellular)
- DTP: Diphtheria, Tetanus, Pertussis (whole cell)
- HibOC: a Hib vaccine that uses CRM197 as a carrier protein conjugated to PRP
- Hep A, Hep B: Hepatitis A or B vaccine
- Hib: Haemophilus influenzae, type b
- IPV/eIPV: Inactivated polio vaccine or enhanced potency IPV
- MMR: Measles, Mumps, Rubella vaccine
- MMRV: Measles, Mumps, Rubella, Varicella vaccine
- OMP: outer membrane protein of Neisseria meningitides
- OPV or eOPV: live or attenuated oral polio vaccine
- OspA: outer surface protein A of Lyme spirochete
- Polio: refers to either OPV or eOPV
- PRP: polyribosylribitol phosphate (the capsular polysaccharide of Hib)
- PRP-T, PRP-D, PRP-OMP: Hib vaccines with the PRP conjugated to T(tetanus), D(diphtheria) or OMP, respectively as the carrier protein
- Var: varicella vaccine