Antifungals and Anti-Tuberculosis Agents

Christine Kubin, Pharm.D., BCPS
Clinical Pharmacist, Infectious Diseases
NewYork-Presbyterian Hospital
Columbia University Medical Center

Antifungal Agents

Review of our Fungal “Players”

Fungi

Yeast

Moulds

Candida

Cryptococcus

Pneumocystis

Aspergillus

Mucor

Dermatophytes

Opportunistic fungi

- Normal flora
- Ubiquitous in our environment
- Aspergillus spp.
- Cryptococcus spp.
- Mucor spp.

Newly emerging fungi

- Fusarium
- Scedosporium
- Trichosporin

Endemic geographically restricted

- Blastomycosis sp.
- Coccidioides sp.
- Histoplasma sp.

Risk Factors for Fungal Disease

- Candidiasis
 - Antibiotics
 - Indwelling catheters
 - Hyperalimentation
 - Multiple abdominal surgeries
 - Prosthetic material
 - Severe burns
 - Neoplastic diseases/chemotherapy
 - Immunosuppressive therapy
 - Diabetes mellitus
 - Extremes of age

- Aspergillosis
 - Granulocytopenia (↓ neutrophil numbers or function)
 - T-cell dysfunction
 - Hematologic and other malignancies
 - Organ allograft recipients
 - Immunosuppressive therapy
 - Corticosteroids
 - Chronic granulomatous disease
 - AIDS
 - Burn patients

An optimal antifungal drug has...

- Wide spectrum of activity
- Favorable pharmacokinetic profile
- Adequate in vivo efficacy
- Low rate of toxicity
- Low cost
Invasive Aspergillosis Mortality

Review of 1941 Patients from 50 Studies

![Graph showing case fatality rates for different types of infections](image)

Systemic Antifungal Agents

By Mechanism of Action

- **Membrane disrupting agents**
 - Amphotericin B
- **Ergosterol synthesis inhibitors**
 - Azoles
- **Nucleic acid inhibitor**
 - Fluconosine
- **Glucan synthesis inhibitors**
 - Echinocandins

The Promise of a Dynamic Era

The Azoles
- Fluconazole (Diflucan®)
- Itraconazole (Sporanox®)
- Voriconazole (Vfend®)
- Posaconazole (Noxafil®)

Amphotericin B
- Amphotericin B deoxycholate (Fungizone®)
- ABCD (Amphotec®)
- ABLC (Abelcet®)
- Liposomal Amphotericin B (Ambisome®)

Echinocandins
- Caspofungin (Cancidas®)
- Micafungin (Mycamine®)
- Anidulafungin (Eraxis®)

Flucytosine (Ancobon®)

Targets of Antifungal Agents

- Polyene antibiotics
 - Amphotericin B
 - Lipid-AMB
- Azole antifungals
 - Ketoconazole
 - Itraconazole
 - Fluconazole
 - Voriconazole
 - Posaconazole
- Echinocandins
 - Caspofungin (Cancidas®)
 - Micafungin (Mycamine®)
 - Anidulafungin (Eraxis®)
- Flucytosine (Ancobon®)

Amphotericin B

- A polypeptide
- Clinical use since 1960
- Insoluble in water
- Solubilized by sodium deoxycholate
- Highest concentrations in liver, spleen, bone marrow with less in kidneys and lung
- Half-life
 - Tissue ~15 days, Plasma ~5 days

Systemic Antifungal Agents

![Diagram showing targets of antifungal agents](image)

![Diagram showing the promise of a dynamic era](image)
Amphotericin B Binds to Ergosterol and Generates Pores

- Mechanism of action
 - Binds to ergosterol and alter cell membrane permeability → cell death
 - Also binds to cholesterol → adverse effects

Amphotericin B

- Most broad spectrum antifungal – long considered the “gold standard”
 - Clinical activity
 - Candida sp.
 - C. albicans often resistant
 - Cryptococcus neoformans
 - Blastomycosis
 - Histoplasmosis
 - Aspergillus sp.
 - Zymomyces
 - Rhizopus sp., Mucor sp., etc.
 - Little to no activity
 - Aspergillus tamu, Aspergillus nulas, Aspergillus flavus, Fusarium sp., Pseudoallescheria boydii, Scedosporium prolificans, Trichosporon beigelii
 - Toxicities
 - Nephrotoxicity
 - Infusion Related Reactions (IRRs)
 - Electrolyte Abnormalities
 - Thrombophilies
 - Anemia

Available Lipid-Based Amphotericin B Agents

<table>
<thead>
<tr>
<th>Product</th>
<th>Chemical Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipid Complex ABLC; Abelcet®</td>
<td>Flattened, ribbon-like complex. Molecular ratio (drug:lipid) = 3.7. Particle size = 1,500 – 11,000 nm.</td>
</tr>
<tr>
<td>Colloidal Dispersion ABLC; Amphotec® or Amphotec®</td>
<td>Elongated disk structure. Molecular ratio (drug:lipid) = 1:1. Particle size = 120 – 140 nm.</td>
</tr>
</tbody>
</table>

Lipid Amphotericin B Product Comparison

- Particle
 - Micelle
 - Lipid disks
 - Ribbons, sheets
 - Liposomes, small unilamellar vesicles

- Pharmacokinetics
 - Intravenous formulation only
 - Distribution
 - Extensively tissue bound
 - Half-life
 - Tissue ~15 days
 - Plasma ~5 days

Azole Antifungals

- Imidazoles
 - Ketoconazole
- Triazoles
 - Itraconazole
 - Fluconazole
 - Voriconazole
 - Posaconazole

- Mechanism of action
 - Inhibit ergosterol synthesis through inhibition of CYP51A gene product, lanosterol 14α-demethylase
 - Deposition of ergosterol on fungal cell membrane

- Resistance
 - ERG 11 mutations (gene encoding 14α-sterol demethylase) leading to overexpression
 - ↑azole efflux
 - ↑ production or alteration 14α-demethylase
Azole Antifungals Spectrum of Activity

<table>
<thead>
<tr>
<th>Organism</th>
<th>Ketoconazole</th>
<th>Fluconazole</th>
<th>Voriconazole</th>
<th>Itraconazole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yeast</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. albicans</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Other moulds</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Zygomycetes</td>
<td>S</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>C. krusei</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>C. lusitaniae</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
</tbody>
</table>

Understanding the *Candida* species

<table>
<thead>
<tr>
<th>Organism</th>
<th>Fluconazole</th>
<th>Voriconazole</th>
<th>Itraconazole</th>
<th>Posaconazole</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>C. lusitaniae</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>C. krusei</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>C. parapsilosis</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
</tbody>
</table>

Fluconazole

- **Favorable pharmacokinetic and toxicity profile**
 - Low me and high water solubility → rapid absorption and bioavailability
 - No dependence on low gastric pH
 - Effectively penetrates CSF (50-90% plasma levels)
 - Brain and eye tool
 - >90% renal excretion
- **Adverse effects**
 - Very well tolerated
 - GI upset, headache
- **Dose**
 - 100-800 mg/d (max 1600 mg/d)
 - 60 mg/kg for susceptible strains (400 mg/d)
 - 12 mg/kg for S-D strains (800 mg/d)
 - IV and oral interchangeable (>90% bioavailability)
 - Renal disease
 - Oral (>95% bioavailability on empty stomach)
 - IV: sulfobutyl ether-beta-cyclodextrin, accumulates

Voriconazole

- Second-generation synthetic derivative of fluconazole
 - Addition of methyl group to the propyl backbone
 - Substitution of triazole moiety with a fluropyrimidine group
- Active against yeast and moulds
 - Fungalidal in vitro against Aspergillus spp., Scedosporium spp., Fusarium spp.
 - Fungalidal in vivo against Candida spp.
- **Adverse effects**
 - Transient, dose-related visual disturbances (30%)
 - Elevated liver function tests (13%)
 - May be dose-related
 - Skin reactions (6%)
- **Drug interactions**
 - Incompatible
 - Reduced bioavailability with cyclosporin, tacrolimus, macrolides, antibiotics, calcium channel blockers
 - May affect the metabolism of CYP3A4 substrates

Itraconazole

- **Drug Interactions**
 - Propensity and extent greater than fluconazole
 - Substrate of CYP3A4 and inhibitor of CYP2C9
- **IV Efficacy**
 - Formulated in hydroxypropyl-beta-cyclodextrin
 - Increases solubility of itraconazole
- **Renal dysfunction**
 - A 4-fold reduction in clearance in patients with CrCl < 20 mL/min
- **Spectrum**
 - Paracoccidioidomycosis, blastomycosis, histoplasmosis and sporotrichosis, cutaneous and mucosal candidiasis, Aspergillus
- **Dosing**
 - 200 mg IV q12h x 4 doses, then 200 mg IV q48h followed by 200 mg PO q12h oral solution
 - Target trough > 0.5 mcg/mL

Voriconazole Precautions (AND LIMITATIONS?)

- **Adverse effects**
 - Transient, dose-related visual disturbances (30%)
 - Elevated liver function tests (13%)
- **May be dose-related**
- **Skin reactions (6%)**
- **Drug interactions**
 - **Incompatible**
 - Oral
 - Reduced bioavailability with cyclosporin, tacrolimus, macrolides, antibiotics, calcium channel blockers
 - May affect the metabolism of CYP3A4 substrates
 - **IV**
 - Reduced bioavailability with cyclosporin, tacrolimus, macrolides, antibiotics, calcium channel blockers
 - May affect the metabolism of CYP3A4 substrates
Flucytosine (5-FC)

- **Mechanism of action**
 - Flucytosine is deaminated to 5-fluorocytosine (5-FC)
 - Incorporated into RNA and disrupts protein synthesis

- **Resistance**
 - Develops during therapy, especially monotherapy
 - Single point mutation
 - Loss of permease necessary for cytosine transport
 - Activity of UMP pyrophosphorylase or cytosine deaminase

- **Spectrum**
 - Cryptococcus neoformans
 - Candida sp. (except C. krusei)
 - Little to no activity against Aspergillus and other molds

Posaconazole (Noxafil®)

- **Indications**
 - Prophylaxis of invasive Aspergillus and Candida infections in severely immunocompromised hosts, such as HSCT recipients with GVHD or those with hematologic malignancies with prolonged neutropenia (≥ 13 yrs old)

- **Dose** (40 mg/5 mL oral suspension ONLY)
 - Prophylaxis: 200 mg PO 4x/day or 400 mg PO BID

- **Drug interactions**
 - Cimetidine decreases POSA bioavailability

- **Clinical uses**
 - Prophylaxis
 - Treatment: 200 mg PO 4x/day or 400 mg PO BID

- **Adverse effects**
 - N/V, hepatic

- **Prophylaxis**
 - 200 mg (5 mL) PO TID with a high fat meal

- **Indications**
 - Prophylaxis of invasive fungal infections
 - Aspergillus spp. and other molds

Flucytosine

- **Pharmacokinetics**
 - Oral only
 - Distribution
 - CSF levels ~75% of serum levels
 - Elimination
 - 90% excreted via glomerular filtration
 - Half-life ~3-6 hours
 - Renal/hepatic disease
 - Dose adjust in renal dysfunction

- **Adverse effects**
 - Dose-dependent bone marrow suppression (↓ WBC, ↓ platelets)
 - G1 (nausea/vomiting/diarrhea)

- **Clinical uses**
 - Cryptococcal meningitis, hepatosplenic candidiasis, Candida endophthalmitis
 - Used in combination ONLY (usually with amphotericin)

- **Minimizes development of resistance**

Aazole Inhibition of CYP P450

- Ketoconazole
- Fluconazole
- Voriconazole
- Posaconazole
- Amphotericin B
- Voriconazole
- Fluconazole
- Voriconazole
- Posaconazole
Echinocandins - spectrum

Highly Active
- C. albicans
- C. glabrata
- C. tropicalis
- C. krusei
- C. kefyr
- P. carinii

Very Active
- C. parapsilosis
- C. guilliermondii
- A. fumigatus
- A. flavus
- A. terreus
- C. lusitaniae
- C. haemulonii

Some Activity
- C. immitis
- B. dermatitidis
- Scedosporium species
- P. variotii
- H. capsulatum

Very low MIC, with fungicidal activity and good in-vivo activity, but only active against cyst forms, and probably only useful for prophylaxis in some instances.

Understanding the Candida species

<table>
<thead>
<tr>
<th>Fungi & (\text{MIC})</th>
<th>Echinocandins</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans</td>
<td>S S S S S S S</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>S S S S S S S</td>
</tr>
<tr>
<td>C. parapsilosis</td>
<td>S S S S S S S</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>S to I (r)</td>
</tr>
<tr>
<td>C. krusei</td>
<td>I to R</td>
</tr>
<tr>
<td>C. lusitaniae</td>
<td>S to R (r)</td>
</tr>
</tbody>
</table>

How to Choose?
- Spectrum
 - Likely pathogens
 - Documented pathogens
- Site of infection
- Concomitant diseases
- Hepatic renal function
- Toxicities
- Drug Interactions
- IV/PO
- Cost

Echinocandin Indications

- **Caspofungin**
 - Candidemia and the following Candida infections: intra-abdominal abscesses, peritonitis and pleural space infections
 - Not studied in endocarditis, osteomyelitis or meningitis due to Candida sp.
 - Empirical therapy for presumed fungal infections in febrile neutropenic patients
 - Not studied as initial therapy for IA

- **Micafungin**
 - Esophageal candidiasis
 - Prophylaxis of Candida infections in patients undergoing HSCT

- **Anidulafungin**
 - Esophageal candidiasis
 - Candidemia and other forms of Candida infections (intra-abd abscess, and peritonitis)

Treatment Options for Candida sp.

- **Amphotericin B**
- **Fluconazole**
- **Itraconazole**
- **Voriconazole**
- **Posaconazole (?)**
- **Caspofungin / Micafungin / Anidulafungin**
Combination Antifungal Therapy

- **Echinocandins**
 - Pros
 - Cidal against Candida sp.
 - Expanded spectrum to \(\text{Scedosporium} \)
 - Activity against azole-resistant Candida species
 - Lack of common significant drug interactions
 - Well tolerated
 - IV only
 - $$$

- **Fluconazole**
 - Pros
 - Clinical experience and comparable outcomes
 - Activity against the majority of Candida species
 - Well tolerated
 - IV/PO
 - Less costly
 - Cons
 - Potential resistance

- **Benefits**
 - Increased rate and extent of killing (additivity, synergy)
 - Increase in the spectrum of activity
 - Enhancement in the tissue distribution of the two drugs
 - Reduction in drug-related toxicity, particularly if the dosage of a toxic drug can be reduced

- **In vitro studies controversial**
- **Clinical efficacy data rely on case reports/series**
- **Literature probably biased towards reports of success**
- **Many questions remain...**
 - What combination?
 - When?
 - Sequence
 - Initial vs. salvage
 - Multiresistant species

Aspergillosis Treatment

- **Risk factors**
 - granulocytopenia (↓ neutrophil numbers or function)
 - T-cell dysfunction
 - hematologic and other malignancies
 - organ allograft recipients
 - immunosuppressive therapy
 - corticosteroids
 - chronic granulomatous disease
 - AIDS
 - Burn patients

- **Drug therapy options**
 - Amphotericin B product
 - Itraconazole
 - Echinocandins
 - Voriconazole
 - Posaconazole (?)

- **Pros**
 - Well tolerated
 - IV/PO

- **Cons**
 - Potential resistance
 - Activity against azole-resistant species
 - Activity against the majority of Aspergillus species
 - Activity against Candida

Conclusions Related to Combination Antifungal Therapy

- **Advantages**
 - Decreased rate and extent of killing (antagonism)
 - Increase in drug-related toxicity
 - Increased risk of drug-drug interactions
 - Increased cost compared to monotherapy

- **Disadvantages**
 - Decreased rate and extent of killing (additivity, synergy)
 - Decrease in antifungal drug resistance
 - Increase in the spectrum of activity
 - Enhancement in the tissue distribution of the two drugs

Anti-Tuberculosis Agents

- *Methenamine silver (GMS)* stained tissue section of lung showing dichotomously branched, septate hyphae of *Aspergillus fumigatus*.
Anti-Tuberculosis Agents

- **First-line Drugs**
 - Isoniazid
 - Pyrazinamide
 - Ethambutol
 - Streptomycin

- **Second-line Drugs**
 - Rifabutin
 - Quinolones
 - Capreomycin
 - Amikacin, kanamycin
 - Para-aminosalicylic acid (PAS)
 - Cycloserine
 - Ethionamide

Anti-Tuberculosis Therapy

- Drug therapy is the cornerstone of TB management

- **Goals**
 - Kill TB rapidly
 - Prevent emergence of resistance
 - Eliminate persistent bacilli from the host to prevent relapse

- **Drug therapy**
 - **First line agents**
 - Greatest efficacy with acceptable toxicity
 - **Second-line agents**
 - Less efficacy, greater toxicity, or both
 - If properly used, can achieve cure rate ~98%
 - Increasing prevalence of multidrug resistant TB (MDRTB)

Treatment Principles

- **Disease burden**
 - Asymptomatic patients have an organism load of ~10^3 organisms
 - Cavitary pulmonary TB has a load of 10^11 organisms

- **As the number of organisms increases, likelihood of drug-resistant mutants increases**
 - Mutants found at rates of 1 in 10^6 to 1 in 10^9 organisms

- **Drug therapy regimens**
 - **Latent TB**
 - Monotherapy, usually with isoniazid (INH)
 - Risk of selecting out resistant organisms is low
 - **Active TB**
 - Combination therapy of at least 2 drugs, generally three or more
 - Rates for multiple drug mutations occur as an additive function
 - 1 in 10^17 (INH rate of 10^6 + RIF rate of 10^7)

Treatment Principles (cont.)

- **3 subpopulations of mycobacteria proposed to exist**
 - Extracellular, rapidly dividing, within cavities: (10^7 to 10^9)
 - Killed most readily by INH > RIF > streptomycin > other drugs
 - Organisms residing within caseating granulomas (semi-dormant metabolic state; 10^5 to 10^6)
 - Activity of PZA > INH and RIF
 - Intracellular mycobacteria present within macrophages (10^4 to 10^6)
 - RIF, INH, PZA and quinolones believed to be most active

Treatment Principles (cont.)

<table>
<thead>
<tr>
<th>Early bactericidal activity</th>
<th>Sterilizing activity</th>
<th>Prevent emergence of resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rifampin</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Isoniazid</td>
<td>×</td>
<td>√</td>
</tr>
<tr>
<td>Pyrazinamide</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ethambutol</td>
<td>√</td>
<td>X</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

- **Toxicities**
 - Hepatotoxicity
 - Risk factors = multiple hepatotoxic agents, alcohol abuse

- **Regimen and Dosing**
 - Duration varies
 - Condition of patient, extent of disease, presence of drug resistance, and tolerance of medications
 - Adherence is important (DOT)
 - Daily vs. TW
 - PO vs. IV vs. IM

First-Line Agents
Isoniazid (INH)
- Inhibits mycobacterial acid synthesis
- Long-chain fatty acids of the mycobacterial cell wall
- Bactericidal against growing MTB
- Bacteriostatic against nonreplicating MTB
- PO only
- Well absorbed
- Metabolized in liver by N-acetyltransferase
- PO only
- Mechanism unknown
- PO only
- Metabolized in the liver, but metabolites are renally excreted
- Toxicities
 - ↑↑ Serum transaminases (AST, ALT)
 - ⇓↓↓ Nausea/vomiting
 - Hyperuricemia
 - ↑↑ Converted to pyrazinoic acid (active metabolite)
 - Nephrotoxicity
 - Blood dyscrasias
 - Cross resistance among rifamycins
 - Not good sterilizing drug
 - Poor activity in acidic environment of closed foci
 - Cross resistance among rifamycins
 - Drug interactions still less potent inducer CYP450
 - Rash
 - Red-orange discoloration of body fluids
 - Nephrotoxicity
 - Tend to be mild and reversible

Rifampin
- Inhibits DNA-dependent RNA polymerase
- Bactericidal (very effective)
- PO only
- Toxicities
 - ↑↑ Tend to be mild and reversible
 - Rash
 - Nephrotoxicity
 - Tend to be mild and reversible
 - Dizziness, problems with balance, tinnitus
 - Can be permanent
 - Nephrotoxicity
 - Tend to be mild and reversible

First Line Agents (cont.)
Pyrazinamide
- Mechanism unknown
- PO only
- Metabolized in the liver, but metabolites are renally excreted
- Toxicities
 - ↑↑ ↑↑ Serum transaminases (AST, ALT)
 - Nausea/vomiting
 - Hyperuricemia

Ethambutol
- Inhibits cell wall components
- PO only
- Renal excretion
- Toxicities
 - Optic neuritis (dose-related)
 - Hyperuricemia

Streptomycin
- Inhibits protein synthesis (aminoglycoside)
- Bactericidal
- Poor activity in acidic environment of closed foci
- Not good sterilizing drug
- IM/IV
- Renal excretion
- Toxicities
 - Nephrotoxicity
 - Uric acid (active metabolite)
 - Cross resistance among rifamycins
 - Poor activity in acidic environment of closed foci
 - Cross resistance among rifamycins
 - Nephrotoxicity
 - Tend to be mild and reversible
 - Can be permanent

Second Line Agents

Rifabutin
- Often used as an alternative to rifampin
- PO only
- Toxicities
 - Uveitis (ocular pain, blurred vision)

Quinolones
- Levofloxacin, moxifloxacin, gatifloxacin
- Bactericidal against extracellular organisms and achieve good intracellular concentrations
- IV/PO
- Urea
- IV alternative
- Well tolerated option
- Toxicities
 - Headache, insomnia, restlessness

Quinolones
- Levofloxacin, moxifloxacin, gatifloxacin
- Bactericidal against extracellular organisms and achieve good intracellular concentrations
- IV/PO
- Urea
- IV alternative
- Well tolerated option
- Toxicities
 - Headache, insomnia, restlessness
Second Line Agents

- **Para-aminosalicylic acid (PAS)**
 - Synthetic structural analog of aminobenzoic acid
 - Bacteriostatic for extracellular organisms only
 - Uses: MDR-TB
 - Toxicities: GI (N/V/D), Hypothyroidism

- **Capreomycin**
 - Uses: MDR-TB, IV
 - Cross-resistance with aminoglycosides
 - Toxicities: Injection pain, Hearing loss, tinnitus, Renal dysfunction

- **Amikacin, kanamycin**
 - Aminoglycosides
 - Cross-resistance with streptomycin
 - Uses: MDR-TB (bacteriostatic), PO only
 - Toxicities: Renal toxicity, Hearing loss, tinnitus

- **Para-aminosalicylic acid (PAS)**
 - Synthetic structural analog of aminobenzoic acid
 - Bacteriostatic for extracellular organisms only
 - Uses: MDR-TB (bacteriostatic), PO only
 - Toxicities (can be severe): GI (N/V/D), Hypothyroidism

Drug-Resistant TB

- **Acquired resistance**
 - Suboptimal therapy that encourages selective growth of mutants resistant to one or more drugs

- **Primary resistance**
 - Infection from a source case who has drug-resistant disease

- **Factors leading to suboptimal therapy**
 - Intermittent drug supplies
 - Use of expired drugs
 - Unavailability of combination preparations
 - Use of poorly formulated combination preparations
 - Inappropriate drug regimens
 - Addition of single drugs to failing regimens in the absence of bacteriologic control
 - Poor supervision of therapy
 - Unacceptably high cost to patient (drugs, travel to clinic, time off work)

QUESTIONS?

- **Cycloserine**
 - Uses: MDR-TB, bacteriostatic for both intracellular and extracellular organisms
 - PO only
 - Toxicities: Central nervous system effects (confusion, irritability, somnolence, headache, vertigo, seizures), Peripheral neuropathy

- **Ethionamide**
 - Uses: MDR-TB (bacteriostatic)
 - Bacteriostatic for extracellular organisms only
 - PO only
 - Toxicities: Nausea/vomiting, Peripheral neuropathy, Psychiatric disturbances, ↑↑ liver enzymes, ↑↑ glucose, Goiter with or without hypothyroidism, Gynecomastia, impotence, menstrual irregularities