HIV Diagnosis and Pathogenesis

Scott M. Hammer, M.D.

HIV Diagnosis

- Consider in anyone presenting with symptoms and signs compatible with an HIV-related syndrome or in an asymptomatic person with a risk factor for acquisition
- Full sexual and behavioral history should be taken in all patients
 - Assumptions of risk (or lack thereof) by clinicians are unreliable
- CDC urging that HIV testing be part of routine medical care

Laboratory Diagnosis of Established HIV Infection: Antibody Detection

- **Screening**
 - Serum ELISA
 - Rapid blood or salivary Ab tests
- **Confirmation**
 - Western blot
 - In some settings, confirmation of one rapid test is done by performing a second, different rapid test
- Written consent for HIV Ab testing must be obtained and be accompanied by pre- and post-test counselling
 - Consent process may change to make it simpler and easier but proper counselling remains crucial

Laboratory Diagnosis of Acute HIV-1 Infection

- Patients with acute HIV infection may present to a health care facility before full antibody seroconversion
 - ELISA may be negative
 - ELISA may be positive with negative or indeterminate Western blot
- Plasma HIV-1 RNA level should be done if acute HIV infection is suspected
- Follow-up antibody testing should be performed to document full seroconversion (positive ELISA and WB)

Established HIV Infection: Pathogenesis

- Active viral replication present throughout course of disease
- Major reservoirs of infection exist outside of blood compartment
 - Lymphoreticular tissues
 - Gastrointestinal tract (GALT)
 - Central nervous system
 - Genital tract
- Virus exists as multiple quasispecies
 - Mixtures of viruses with differential phenotypic and genotypic characteristics may coexist
- At least 10 X 10^9 virions produced and destroyed each day
- T1/2 of HIV in plasma is <6 h and may be as short as 30 minutes
- Immune response, chemokine receptor status and HLA type are important codeterminants of outcome

GI Associated Lymphoid Tissue Following Acute Infection

- Depletion of CD4+ cells in lamina propria
- Absence of lymphoid cell aggregates in terminal ileum
Determinants of Outcome: Selected Viral Factors

- Escape from immune response
 - Under immune selective pressure (cellular and humoral), mutations in gag, pol and env may arise
- Attenuation
 - nef deleted viruses associated with slow or long-term nonprogression in case reports and small cohorts
- Tropism
 - R5 to X4 virus conversion associated with increased viral pathogenicity and disease progression
- Subtypes
 - Potential for differential risks of heterosexual spread or rates of disease progression

HIV Nomenclature

- Groups
 - M, N, O
- Subtypes
 - At least 9
- Sub-subtypes
- Circulating recombinant forms
 - At least 15

Host Factors in HIV Infection (I)

- Cell-mediated immunity
 - Cytotoxic T cells
 - Eliminate virus infected cells
 - Play prominent role in control of viremia, slowing of disease progression and perhaps prevention of infection
 - T-helper response
 - Vital for preservation of CTL response
- Humoral immunity
 - Role in prevention of transmission and disease progression unclear

Host Factors in HIV Infection (II)

- Chemokine receptors
 - CCR5-Δ32 deletion
 - Homozygosity associated with decreased susceptibility to R5 virus infection
 - Heterozygosity associated with delayed disease progression
 - CCR2-V64I mutation
 - Heterozygosity associated with delayed disease progression
 - CCR5 promoter polymorphisms
 - 59029-G homozygosity associated with slower disease progression
 - 59356-T homozygosity associated with increased perinatal transmission

Global Distribution of HIV-1 Subtypes and Recombinants

Role of CTL’s in Control of Viremia

Host Factors in HIV Infection (III)

- Other genetic factors
 - Class I alleles B35 and Cw4
 - Associated with accelerated disease progression
 - Heterozygosity at all HLA class I loci
 - Appear to be protective
 - HLA-B57, HLA-B27, HLA-Bw4, HLA-B*5701
 - Associated with long-term non-progression
 - HLA-B14 and HLA-C8
 - Associated with long-term nonprogression

Mechanisms of CD4+ Cell Death in HIV Infection

- HIV-infected cells
 - Direct cytopathic effect of HIV
 - Lysis by CTL’s
 - Apoptosis
 - Potentiated by viral gp120, Tat, Nef, Vpu
- HIV-uninfected cells
 - Apoptosis
 - Release of gp120, Tat, Nef, Vpu by neighboring, infected cells
 - Activation induced cell death

The Variable Course of HIV-1 Infection

- Typical Progressor
- Rapid Progressor
- Nonprogressor

Phases of Decay Under the Influence of Potent Antiretroviral Therapy

- $T_{1/2} = 1$ d (productively infected CD4’s)
- $T_{1/2} = 2-4$ wks (macrophages, latently infected CD4’s, release of trapped virions)
- $T_{1/2} = 6-44$ mos (resting, memory CD4’s)

Therapeutic Implications of First and Second Phase HIV RNA Declines

- Antiviral potency can be assessed in first 7-14 days
 - Should see 1-2 log declines after initiation of therapy in persons with drug susceptible virus who are adherent
- HIV RNA trajectory in first 1-8 weeks can be predictive of subsequent response
 - Durability of response translates into clinical benefit
Therapeutic Implications of Third Phase of HIV RNA Decay: Latent Cell Reservoir

- Viral eradication not possible with current drugs
- Archive of replication competent virus history is established
 - Drug susceptible and resistant
- Despite the presence of reservoir(s), minimal degree of viral evolution observed in patients with plasma HIV RNA levels <50 c/ml suggests that current approach designed to achieve maximum virus suppression is appropriate

Natural History of Untreated HIV-1 Infection

MACS: CD4 Cell Decline by HIV RNA Stratum

CD4 and HIV-1 RNA (I)

- Independent predictors of outcome in most studies
- Near-term risk defined by CD4
- Longer-term risk defined by both CD4 and HIV-1 RNA
- Rate of CD4 decline linked to HIV RNA level in untreated persons

CD4 and HIV-1 RNA (II)

- Good but incomplete surrogate markers
 - For both natural history and treatment effect
- Thresholds are arbitrary
 - Disease process is a biologic continuum
 - Gender specificity of HIV RNA in early-mid stage disease needs to be considered
- Treatment decisions should be individualized
 - Baseline should be established
 - Trajectory determined
Initiation of Therapy in Established HIV Infection: Considerations

- Patient's disease stage
 - Symptomatic status
 - CD4 cell count
 - Plasma HIV-1 RNA level

- Patient's commitment to therapy

- Philosophy of treatment
 - Pros and cons of 'early' intervention

Initiation of Therapy in Asymptomatic Persons: Population Based Studies

- Clinical outcome compromised if Rx begun when CD4 <200
 - Miller et al (EuroSIDA), Ann Intern Med 1999;130:570-577
 - Hogg et al (British Columbia), JAMA 2001;286:2568
 - Sterling et al (JHU), AIDS 2001;15:2351-2357
 - Pallela et al (HOPS), Ann Intern Med 2003;138:620-626
 - Sterling et al (JHU), J Infect Dis 2003;188:1659-1665

- Clinical outcome compromised if Rx begun when CD4 <200 or RNA >100,000
 - Egger et al (13 cohorts, >12,000 persons), Lancet 2002;360:119-129

Prognosis According to CD4 and RNA: ART Cohort Collaboration

Progress in HIV Disease

HIV Pathogenesis

Monitoring ↔ Therapy