

Amyloid

- •Fibrillar tissue deposits that bind dye (Congo Red)
- •Some proteins (amyloidogenic proteins) have greater potential to misfold
- •The misfolded protein can induce conformational change in normal proteins causing deposition of insoluble toxic aggregates

Amyloidosis

A disorder in which insoluble protein fibers are deposited in tissues and organs impairing their function.

- •Caused by deposits of homogeneous proteinase-resistant fibrils
- •A stable conformational change in normal cellular protein leads to aggregation:

Soluble ⇒ Insoluble

Systemic Amyloidoses

Amyloid protein	Precursor	Systemic (S) or localized (L)	Syndrome or involved tissues
AL	Immunoglobulin light chain	S, L	Primary, myeloma-associated
AH	Immunoglobulin heavy chain	S. L	Primary, myeloma-associated
ATTR	Transthyretin	S	Familial, senile systemic
		L?	Tenosynovium
$A\beta_2M$	β ₂ -microglobulin	S	Haemodialysis
		L?	Joints
AA	(Apo) serum AA	S	Secondary, reactive
AApoAI	Apolipoprotein-AI	S	Familial
			Aortic
AApoAII	Apolipoprotein-AII	S	Familial
AGel	Gelsolin	S	Familial
ALys	Lysozyme	S	Familial
AFib	Fibrinogen α-chain	S	Familial
ACys	Cystatin C	S	Familial
ABri ^b	ABriPP	S	Familial dementia, British
		L2	
Αβ	Aβ-protein precursor (AβPP)	L	Alzheimer's disease, ageing
APrP	Prion protein	L	Spongioform encephalopathies
ACal	(Pro)calcitonin	L	C-cell thyroid tumours
AIAPP	Islet amyloid polypeptide	L	Islets of Langerhans, insulinoma
AANF	Atrial natriuretic factor	L	Cardiac atria
APro	Prolactin	L	Ageing pituitary, prolactinomas
AIns	Insulin	L	Iatrogenic
AMed	Lactadherin	L	Senile aortic, media
AKer	Kerato-epithelin	L	Cornea; familial
$A(tbn)^c$	tbn	L	Pindborg tumours
ALac	Lactoferrin	L	Cornea; familial

From Merlini and Westermark - J. Internal. Med. 2004, 255:159.

Amyloidosis - Examples

Systemic

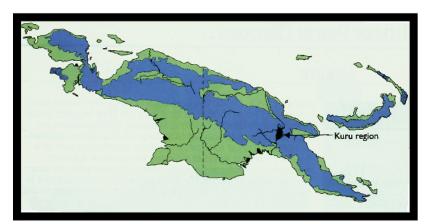
- •Immunoglobulin light chain deposits found in kidney, heart, skeletal muscle, nerves. Patients often present with kidney dysfunction. Associated with myeloma.
- •Serum amyloid A deposits in kidney, liver, spleen. Associated with chonic inflammation (inflammatory arthritis, granulomatous bowel disease, tuberculosis, leprosy...)

Hereditary

•Transthyretin (prealbumin) - deposits in nervous tissue, gastrointestinal, kidney, heart.

Cerebral

- •Alzheimer's Disease deposits of A-β peptide in brain (plaques)
- •Prion Diseases deposits of PrP^C protein in brain (plaques)


Endocrine

•Amylin - Normally packaged with insulin in secretory granules - deposits occur in islets of type 2 diabetes patients (islet amyloid polypeptide, IAPP)

* An infectious disease

Kuru

Papua New Guinea

Kuru

Walking Sticks

Disease strikes children

Kuru

Mother & daughter

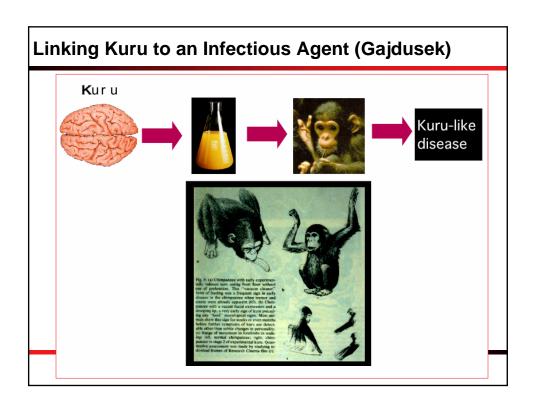
Disease affects the Tribe

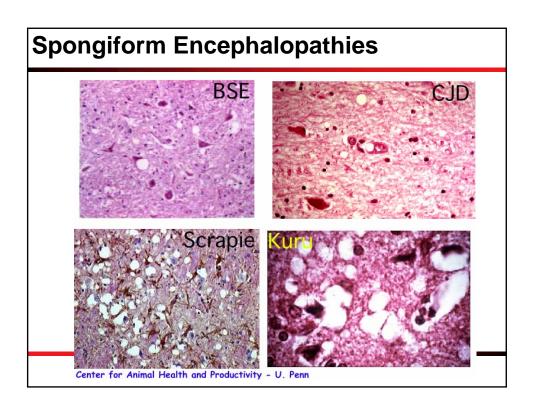
Clinical features of Kuru

Transmission Autoinoculation/ingestion of infected brain

material

Prevalence Fore linguistic group of Papua New Guinea


disorders


Mental impairment, emotional lability, frontal release signs (snout, suck, root,

grasp reflexes)

Course Fatal 9-24 months after onset

Normal section Kuru

"Slow Viral Diseases" - ?

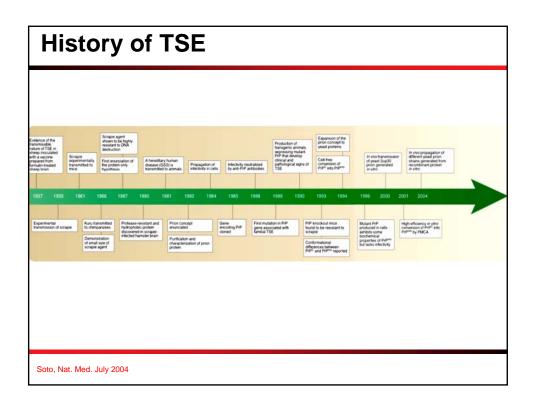
Suggestion that Scrapie is an Infectious Disease

Mid 1930s - vaccine prepared against Louping-ill

- ▶ Infectious encephalomyelitis of Sheep
- ▶ Viral disease spread by ticks (Flavivirus)
- ▶ Formalin-inactivated viral vaccine prepared from sheep brain
- ▶ No adverse effects caused by vaccination for 2 years
- ▶ Subsequently, some sheep herds developed Scrapie
- ▶ Realized that Scrapie was an infectious agent found in some batches of Louping-ill vaccine

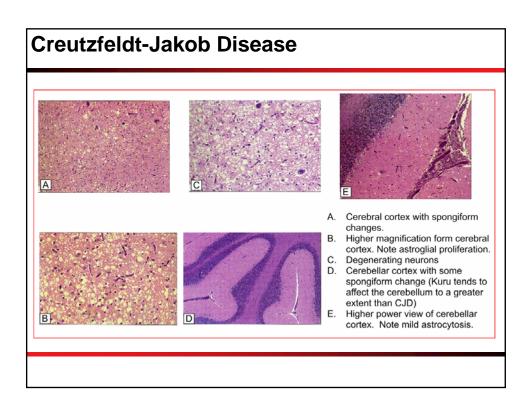
Gordon, W.S., PhD. Advances in Veterinary Research. The Veterinary Record; 1946 November 23. Presented at the National Veterinary Medical Association of Great Britain and Ireland Annual Congress, 1946.

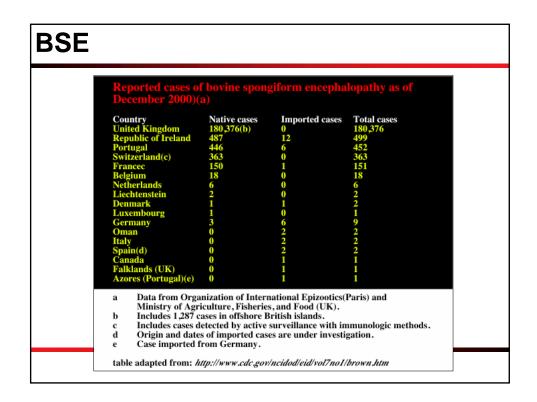
Prion Diseases

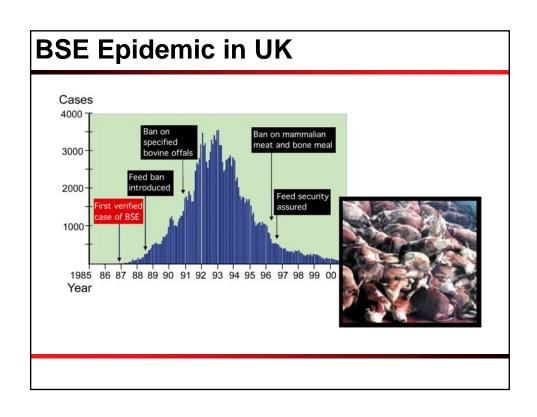

<u>Disease</u>	Natural Host	<u>Prion</u>	Pathogenic PrP Isoform
Scrapie	Sheep and goats	Scrapie Prion	OvPrP ^{Sc}
Transmissible mink encephalopathy (TME)	Mink	TME Prion	MkPrP ^{Sc}
Chronic wasting disease (CWD)	Deer and elk	CWD Prion	MdePrPSc
Bovine spongiform encephalopathy (BSE)	Cattle	BSE Prion	BoPrP ^{Sc}
Feline spongiform encephalopathy (FSE)	Cats	FSE Prion	FePrP ^{Sc}
Exotic ungulate encephalopathy (EUE)	Nyala & greater kudu	EUE Prion	UngPrPSc
Kuru	Humans	Kuru Prion	HuPrP ^{Sc}
Creutzfeldt-Jakob disease (CJD)	Humans	CJD Prion	HuPrP ^{Sc}
Gerstmann-Staussler-Scheinker syndrome (GSS)	Humans	GSS Prion	HuPrPSc
Fatal familial insomnia (FFI)	Humans	FFI Prion	HuPrPS≎

Milestones in Development of the Prion Hypothesis

- ▶ Kuru transmitted to Chimps (Gajdusek, Gibbs, Alpers 1966)
- ▶ Scrapie agent is resistant to radiation inactivation suggests an unusual infectious agent that does not contain nucleic acid (Alpers et al., 1967)
- ▶ Hypotheses develop for transmission of Scrapie agent (Griffith, 1967)
 - •A protein that induces transcription of its own gene
 - •A protein that acquires a pathogenic conformation
- ▶ Creutzfeldt-Jakob Disease transmitted to chimps (Gibbs, Gajdusek et al., 1968)
- ▶ Scrapie agent purified predominately protein; infectivity insensitive to nucleases and other agents that inactivate viruses (Prusiner 1982)



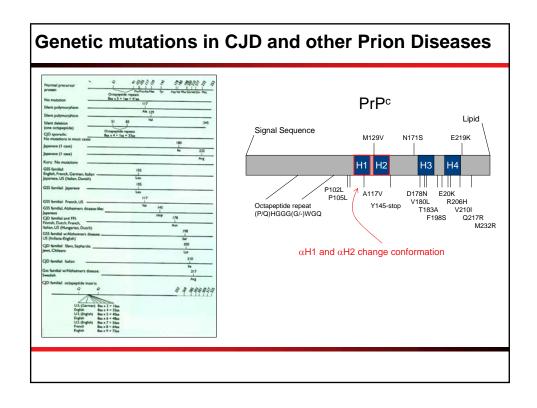

Human Prion Diseases

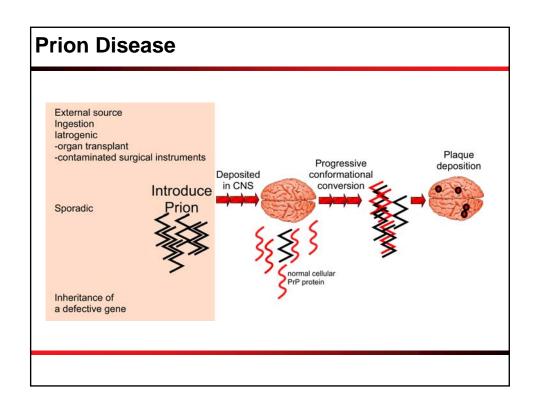

DISEASE	SYMPTOMS	ACQUSITION	DISTRIBUTION	DISEASE COURSE
Kuru	Loss of coordination followed by dementia	Infection (Cannibilism)	2600cases identified in Papua New Guinea	3 mo - 1 yr
Creutzfeldt-Jakob Disease	Dementia followed by loss of coordination	Usually unknown (Sporadic disease) 15% of cases involve an inherited mutation in the PrP gene Rarely infection through contaminated surgical instrument or organ transplant	Sporadic 1/1,000,000 Inherited 100 extended families identified Infectious 80 cases identified	Usually 1 yr but as short as 1 mo and as long as 10 yrs
Gerstmann- Straussler- Scheinker disease	Loss of coordination followed by dementia	Inheritance of a mutation in the PrP gene	50 extended families identified	2-6 yrs
Fatal familial insomnia	Trouble sleeping and disturbance of the autonomic nervous system. Followed by dementia and loss of coordination	Inheritance of a mutation in the PrP gene	9 extended families identified	About 1 yr

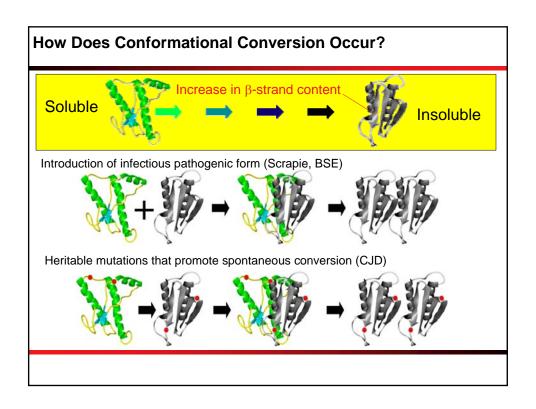
Creutzfeldt-Jakob Disease

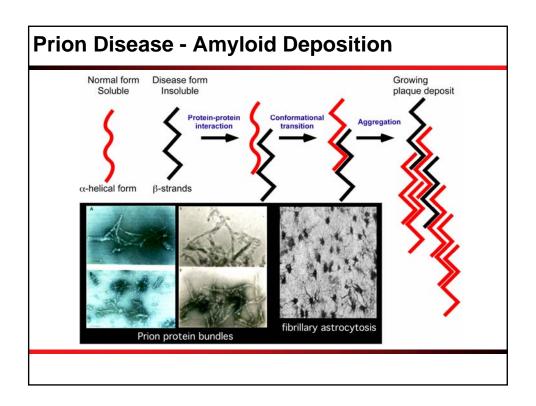
- Most common human TSE about 1 case/million/yr
- Three forms traditionally recognized
 - 1. sCJD sporadic, about 85% of cases
 - 2. fCJD familial, about 10% of cases
 - 3. iCJD iatrogenic, about 5% of cases
- In 1996 a new variant emerged in the U.K. vCJD
 - Associated with eating beef infected with BSE agent (Mad Cow)
 - In contrast with traditional forms of CJD, vCJD strikes young adults
 - Crossed species barrier

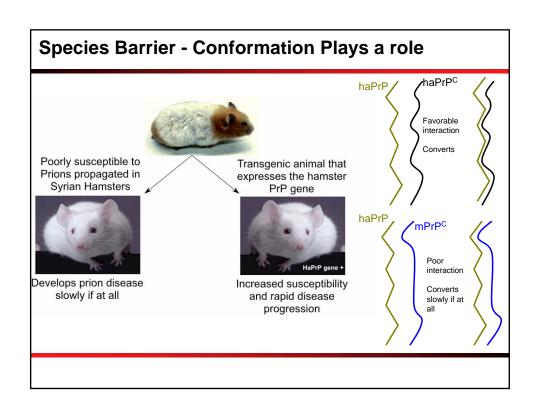
Search for the Agent (Prusiner Lab)

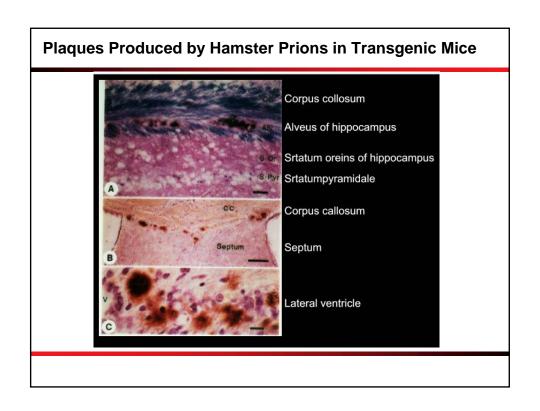


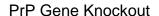

Scrapie

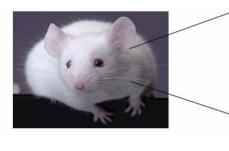

- •Extremely small, proteinaceous infectious particle
- Resistant to DNAse and RNAse
- •Resistant to limited proteolysis
- •Resistant to chemical agents that inactivate conventional viruses


What is Normal PrP^c?

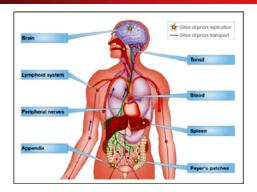

- ▶ Glycoprotein ~250 amino acids
- ▶ Membrane associated through a C-terminal glycosyphosphatidylinositol (GPI) linkage
- ▶ Role in membrane trafficing has been proposed possibly involved in some endocytic pathways
- ▶ Knockout mice develop and behave normally, but perhaps prone to seizures
- ▶ Interacts with laminin, which plays a role in cell adhesion and neurite formation
- ▶ Also interacts with the laminin receptor resulting in internalization of membrane-bound PrP^C
- ▶ Binds Cu⁺⁺ may have an antioxidant function that promotes neuron survival
- ▶ Abundant in brain also detected in: spleen, lymph node, lung, heart, kidney, skeletal muscle, uterus, adrenal gland, parotid gland, intestine, proventriculus, abomasum and mammary gland.







Normal PrP^C Required for Disease Progression

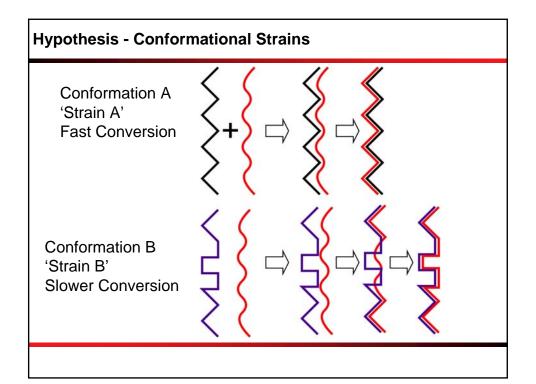


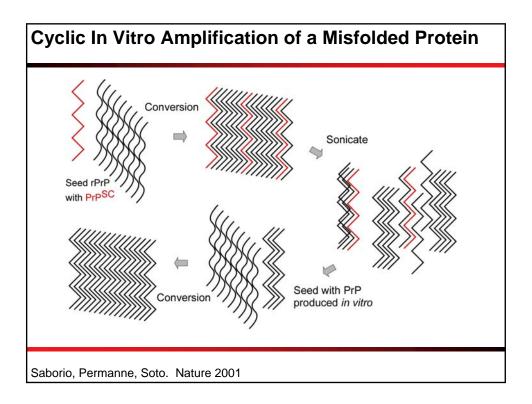
Not susceptible to prion disease

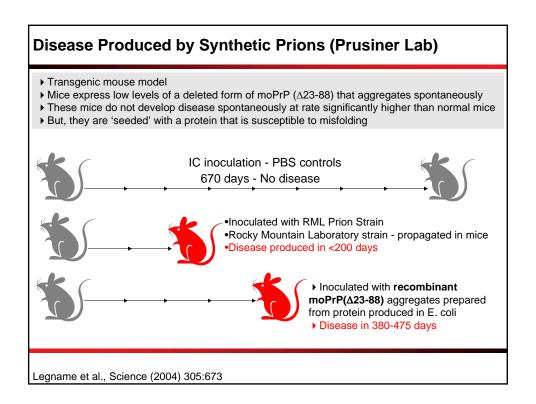
Possibly more prone to seizures

Current View of Prion Disease Development

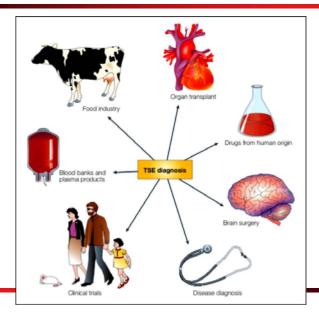
- ▶ Prions ingested and absorbed by intestines (Peyers Patches)
- ▶ Gains access to lymphoid fluids and blood
- ▶ Deposited in lymphoid tissues where it amplifies through conformational conversion
- ▶ Amplified prions deposited in brain perhaps crosses blood-brain barrier or migrates by axonal transport
- ▶ Replicates in brain toxicity resulting in neuronal cell death


Criticisms of the Prion Hypothesis are being Addressed

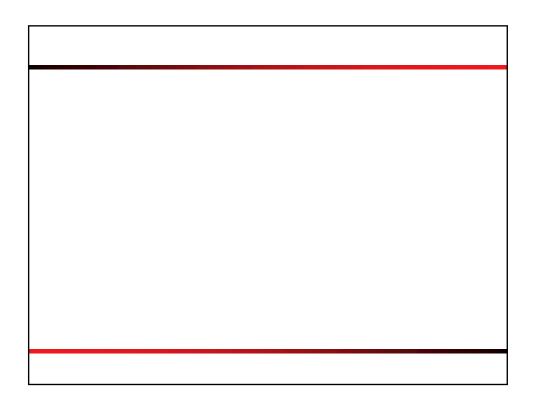

There are different strains of Prions

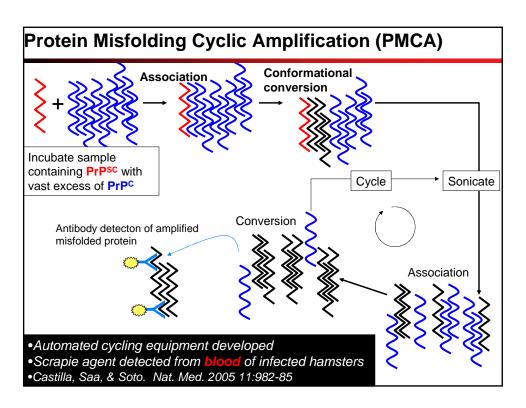

- •Differ in incubation time, clinical features, and neuropathology
- •How are 'Strains' developed without evolution of nucleic acid genomes?

Can conformational transition be observed in vitro?


A recombinant purified Prion has not been shown to induce disease

Immediate Need for Prion Diagnostics




Reading

Soto, C. and Castilla, J. 2004. *The Controversial Protein-Only Hypothesis of Prion Propagation.* Nature Medicine, 10 Supplement: S63-7.

Soto, C. Diagnosing Prion Diseases; *Needs, Challenges, and Hopes.* Nature Reviews, 2:809-13.

Rhodes, R. Deadly Feast: Tracking the Secrets of a Terrifying New Plague. Simon & Schuster 1997

Transmission of Prions in Herbivores

Meat processing byproducts in contaminated feed

Natural horizontal transmission?

Prions excreted in urine of infected mice Seeger et al., Science 310:324-326