CNS Infections

Bacterial meningitis - Pathophysiology - general

Specific organisms - Age Hosts

Treatment/Prevention

Distinguish from viral disease

Meningitis - Neonate Organisms - GBS – Group B Streptococci E.coli K1 (Enteric bacteria) Listeria monocytogenes Enterococci Salmonella - fecal contamination Antibiotics - Cover gram negatives/Listeria/ GBS

What is special about meningitis?

Privileged space – Little room for inflammation No complement Minimal immunoglobulin No PMN's

Well defended Blood brain barrier Specialized endothelial- capillary junctions

Only certain organisms – high grade bacteremia – ?recognition of specific receptors

GBS - Streptococcus agalactiae

Common commensal flora – childbearing women Lack of preformed Ab – sepsis – meningitis in neonate

Early onset disease - Sepsis - pneumonia

Late onset disease - Sepsis - MENINGITIS

Vertical transmission - most important - Preventable

Approach:

What organisms are important in different age groups ?

Historically – Pediatric disease – Changing epidemiology due to widespread vaccination

Epidemiology – Who is at risk ? How can this be prevented ? GBS pathogenesis:

Aspiration from the birth canal

High grade bacteremia – poor neonatal host defenses (PMN function, complement function, lack of Ab for phagocytosis)

Meningeal receptors - endocytosis ?

Intracellular ? Replication - persistence

Clinical relevance - need for prolonged therapy ?

E.coli – K1 –

(not all E. coli - specific capsular type)

Maternal fecal flora - ascending infection

CHO – capsule – lack of antibody

High grade bacteremia – meningitis – specific receptors on meninges -

Problem with antibiotic resistance

Meningitis - neonate

Listeria monocytogenes -Gram positive bacillus - motile Found in animal feces - very common !

Contamination of unpasteurized animal products - organic produce - Mexican cheese

Epidemiology -2000 cases/year Associated with a "flu-like" illness in the mother

Immunocompromised patients - T cell function

Case - 4 month old - T- 104 - seen by M.D. - rx'd with tylenol -Still febrile the next day - seen again, said to have otitis media - prescribed amoxicillin -Increasingly irritable -

Seen in CPMC E.R.(by clinical clerk) chief complaint - "lump on head" - which was a bulging fontanel -

S. pneumoniae in CSF -

Pathology is due to the host response

Not the bacteria invading the brain tissue !

Major pneumococcal virulence factors:

Cell wall fragments - Inflammation

Pneumolysin --- Apoptosis

Table 3. Complications during the Clinical Course and Outcomes in Adults with Bacterial Meningitis. ^o				
Complications	Frequency (%)	Outcome	Frequer (%)	
Systemic complications		Score on Glasgow Outcome Scale		
Cardiorespiratory failure	29	1 (death)	21	
Hyponatremia	26	2 (vegetative state)	<1	
Disseminated intravascular coagulation	8	3 (severe disability)	3	
Arthritis	2-6	4 (moderate disability)	10	
Endocarditis/myocarditis	<1	5 (mild or no disability)	66	
Deterioration of consciousness		Focal neurologic abnormalities		
Clinical evidence of meningoencephalitis	15-20	Cranial-nerve palsies		
Seizures	15-23	Third nerve	1	
Brain edema	6-10	Sixth nerve	3	
Hydrocephalus	3-8	Seventh nerve	1	
Focal neurologic abnormalities		Eighth nerve	14	
Cerebrovascular complications	15-20	Aphasia	2	
Arterial infarction or vasculitis	10-15	Hemiparesis	4	
Venous infanction	3-5	Quadriparesis	1	
Hemonhage	<1	Late effects		
Hearing loss	14-20	Cognitive impairment	10	
Subdural empyema	<1			
Brain absons	<1			
Myeltis	<1			

What to do ???

H. influenzae – non typeable – otitis acquire type B capsule – Poly ribose phosphate Bacteremia – Meningitis

Paradigms for the management of meningitis -

Universal vaccination of infants – HiB – PRP-protein conjugate vaccine Disease gone in vaccinated children

Meningitis - Haemophilus influenzae type B

Antibody - polyribose phosphate capsule Allows efficient phagocytosis

Development of conjugate vaccines:

PRP - Diphtheria toxin Meningococcal OMP

Sporadic cases - adults who lack Ab

Case - 20 year old college sophomore - goes to nurse with headache, T- 102. Diagnosed as having "flu". Still feels unwell,nurse gives tyelenol with codeine... spends night at dorm - collapses and is unarousable. Sent to local hospital, T- 103, WBC -2500 CSF - WBC- 120 - 100% PMN's; Glucose 20/96, Protein-275. PE - Diffuse petecchiae, cold, clammy extremities, Poor air entry.....

MMWR data - 2003 (cumulative)

Hemophilus influenzae - invasive

Serotype b - US - 16 cases !

Non serotype b – 73 – changing epidemiology

Prevent the disese with vaccination

Gram stain of CSF - note PMN's and intracellular bacteria

N. meningitidis

N. meningitidis - Epidemic strains/endemic strains -"meningitis" belt in sub-Saharan Africa (type A) W135

Sporadic cases - types B, A, W135, C

Gram negative (LPS) - Rapid uptake by the epithelial cells -Receptor mediated endocytosis

Encapsulated - requires IgG + complement to phagocytose

Carriers in the population - increased carriage - disease in those lacking antibody $% \label{eq:carriage}$

Meningococcemia – Fulminant sepsis

? LPS of N. meningitidis

Rapid progression

As well as Meningitis -

Complex pathophysiology -

Need for careful monitoring -

MMWR data - 2003 (cumulative)

Meningococcal Disease

1278 cases - US (1460 - last year)

N. meningitidis – OUTBREAKS !

Who is at risk ?

How is the organisms spread - carriers (18% US study)

How can disease be prevented

N. meningitidis

Development of protective immunity - cross reactive CHO's commensal flora (*Neisseria lactamica*)

Vaccines - (epidemic types) - A and C, Y, W 135 Not B - associated with sporadic cases Sialic acid epitopes - look like self

Who to vaccinate? College students? Military, travellers to endemic areas

Prophylaxis - Rifampin, ciprofloxacin, ceftriaxone achieve levels in naso-pharyngeal secretions

Polysaccharide vaccine – standard of care A,C Y, W-135 – not B - ages 2 yrs and up

New conjugate vaccine – "Menactra" A,C,Y, W135conjugated to diphtheria toxoid Indicated for children and adolescents ages 11-18 Adults – to age 55 Travel Complement deficiencies, asplenia HIV Adolescents at "preadolescent assessment" Adolescents at high school entry College freshman

Guillian-Barre syndrome ??

Gram stain - Gram positive / Gram negative organisms

? Too large – Fungi

No organisms – partially treated? Viral disease

Chemistries -

Protein – elevated – loss of tight junctions – loss of Blood Brain Barrier

Glucose - LOW – deranged Blood Brain Barrier NOT bacterial consumption !

Drug	Age group	Dosage	Duration and route of administration
	Children aged <1 month	5 mg/kg every 12 hrs	2 days, orally
	Children aged≥1 month	10 mg/kg every 12 hrs	2 days, orally
	Adults	600 mg every 12 hrs	2 days, orally
Ciprofloxacin [*]	Adults	500 mg	Single dose, orally
Ceftriaxone	Children aged <15 years	125 mg	Single dose, IM ^s
Ceftriaxone	Adults	250 mg	Single dose, IM ^s

c	Other CSF tests:
N	lot obviously bacterial infection:
v	/lycobacterial infection /iral culture PCR
A	Antibody – Western blot
li	ndia Ink stain - cryptococcus

Imaging techniques:

CT – computed tomography - ? Increased intracranial pressure – venticular size – infarcts

MRI – later in management – not necessary for Acute bacterial meningitis – more often for diagnostic purposes

Treatment of meningitis:

Decrease inflammation - S. pneumo

Antimicrobial agents that get into the CSF Cover age specific pathogens

Fluid – CNS pressure management

Septic shock management

Public health considerations

Sequellae of meningitis

Hearing loss Seizure disorder Major neurological dysfunction -Hydrocephalus - obstructed ventricular drainage

Soft neurological dysfunction Attention deficit disorder Behavioral abnormalities