Anaerobes

Michael Yin, MD MS

Definitions

• Anaerobes
 – Bacteria that require anaerobic conditions to initiate and sustain growth
 • Ability to live in oxygen environment (detoxify superoxide ion)
 • Ability to utilize oxygen for energy instead of fermentation or anaerobic respiration

• Strict (obligate) anaerobe
 – Unable to grow if > than 0.5% oxygen

• Moderate anaerobes
 – Capable of growing between 2-8% oxygen

• Microaerophillic bacteria
 – Grows in presence of oxygen, but better in anaerobic conditions

• Facultative bacteria (facultative anaerobes)
 – Grows both in presence and absence of oxygen

Classification of Medically Important Anaerobes

• Gram positive cocci
 – Peptostreptococcus

• Gram negative cocci
 – Veillonella

• Gram positive bacilli
 – Clostridium perfringens, tetani, botulinum, difficile
 – Propionibacterium
 – Actinomyces
 – Lactobacillus
 – Mobiluncus

• Gram negative bacilli
 – Bacteroides fragilis, thetaiotaomicron
 – Fusobacterium
 – Prevotella
 – Porphyromonas

Epidemiology

• Endogenous infections
 – Indigenous microflora
 • Skin: Propionibacterium, Peptostreptococcus
 • Upper respiratory: Propionibacterium
 • Mouth: Fusobacterium, Actinomyces
 • Intestines: Clostridium, Bacteroides, Fusobacterium
 • Vagina: Lactobacillus
 – Flora can be profoundly modified to favor anaerobes
 • Medications: antibiotics, antacids, bowel motility agents
 • Surgery (blind loops)
 • Cancers

• Exogenous infections
 – Spore forming organisms in soil, water, sewage

Role of Anaerobes

• Prevent colonization & infection by pathogens
 • Bacterial interference through elaboration of toxic metabolites, low pH, depletion of nutrients
 • Interference with adhesion

• Contributes to host physiology
 • Bacteroides fragilis synthesizes vitamin K and deconjugates bile acids
Clinical features of anaerobic infections

- The source of infecting micro-organism is the endogenous flora of host
- Alterations of host’s tissues provide suitable conditions for development of opportunist anaerobic infections
- Anaerobic infections are generally polymicrobial
- Abscess formation
- Exotoxin formation

Sites of anaerobic infections

Virulence factors

- Attachement and adhesion
 - Polysaccharide capsules and pili
- Invasion
 - Aerotolerance
- Establishment of infection
 - Polysaccharide capsule (B. fragilis) resists opsonization and phagocytosis
 - Synergize with aerobes
 - Spore formation (Clostridium)
- Tissue damage
 - Elaboration of enzymes, toxins

Anaerobic cocci

- Epidemiology
 - Normal flora of skin, mouth, intestinal and genitourinary tracts
- Pathogenesis
 - Virulence factors not as well characterized
 - Opportunistic pathogens, often involved in polymicrobial infections
 - Brain abscesses, periodontal disease, pneumonias, skin and soft tissue infections, intra-abdominal infections
- Peptostreptococcus
 - P. magnus: chronic bone and joint infections, especially prosthetic joints
 - P. prevotii and P. anaerobius: female genital tract and intra-abdominal infections
- Veillonella
 - Normal oral flora; isolated from infected human bites

Anaerobic gram positive bacilli

- No Spore Formation
 - Propionibacterium
 - P. acnes
 - Actinomyces
 - Lactobacillus
 - Mobiluncus

- Spore Formation
 - Clostridium
 - C. perfringens
 - C. difficile
 - C. tetani
 - C. botulinum

TABLE 20-2 Conditions Predisposing to Anaerobic Infection

| General | Diabetics | Carbohydrates | Lactobacteria | H. pylori | Immunosuppressive | Cytoskeletal drugs | Sphingomyelin | Obligate anaerobic | Other | Tissue necrosis and infarct | Tissue anaerobiosis | Tissue destruction | Aerobic infection | Paronychia | Urethritis | Cellulitis | Septicemia | Posterior | Hematologic | Specialized structures | Cervix | Colon, cecum, lung | Osteomyelitis | Gastrointestinal and female pelvic surgery | Gastrointestinal trauma | Human and extracellular | Anthrax proliferative therapy |
Propionibacterium
- Produces propionic acid as major byproduct of fermentation
- Colonize skin, conjunctiva, external ear, oropharynx, female GU tract
 - *P. acnes*
 - Acne
 - Resides in sebaceous follicles, releases LMW peptide, stimulates an inflammatory response
 - Opportunistic infections
 - Prosthetic devices (heart valves, ventricular shunts)

Pilosebaceous Follicle

Actinomyces
- Facultative or strict anaerobe
- Colonize upper respiratory tract, GI, female GU tract
- Actinomycosis
 - Endogenous disease, no person-person spread
 - Low virulence; development of disease when normal mucosal barriers are disrupted (dental procedure)
 - Diagnosis made by examination of infected fluid:
 - Macroscopic colonies of organisms resembling grains of sand (sulfur granules)
 - Culture

Actinomycosis
- Cervicofacial
- Poor oral hygiene, oral trauma, invasive dental procedure
- Chronic granulomatous lesions that become suppurative and form sinus tracts
- Slowly evolving, painless process
- Treatment: surgical debridement and prolonged penicillin

Lactobacillus
- Facultative or strict anaerobes
- Colonize GI and GU tract
 - Vagina heavily colonized (10⁵/ml) by Lactobacillus crispatus & jensonii
 - Certain strains produces H₂O₂ which is bactericidal to Gardnerella vaginalis
- Clinical disease
 - Transient bacteremia from GU source
 - Bacteremia in immunocompromized host
 - Endocarditis

Mobiluncus
- Obligate anaerobes
- Gram variable
- Colonize GU tract in low numbers
- Associated with bacterial vaginosis
 - Detected in vagina of 6% of controls
 - As many as 97% of women with bacterial vaginosis
Case 1

- 12 year old boy with Acute Myelogenous Leukemia (AML) diagnosed 2 mo. ago
- Pancytopenia after receiving chemotherapy
- Presented with painful ecchymotic areas on legs that rapidly progressed with marked swelling and pain over several hours
 - Afebrile
 - Crepitus in both legs
 - Rapid progression to shock

Case 1

- Needle aspirate of ecchymotic area revealed gram-positive bacilli
- Blood cultures grew Clostridium perfringens

Clostridium

- Epidemiology
 - Ubiquitous
 - Present in soil, water, sewage
 - Normal flora in GI tracts of animals and humans
- Pathogenesis
 - Spore formation
 - Resistant to heat, desiccation, and disinfectants
 - Can survive for years in adverse environments
 - Rapid growth in oxygen deprived, nutritionally enriched environment
 - Toxin elaboration (histolytic toxins, enterotoxins, neurotoxins)

Clostridium perfringens

- Epidemiology
 - GI tract of humans and animals
 - Type A responsible for most human infections, is widely distributed in soil and water contaminated with feces
 - Type B-E do not survive in soil but colonize the intestinal tracts of animals and occasionally humans
- Pathogenesis
 - α-toxin: lecithinase (phospholipase C) that lyses erythrocytes, platelets and endothelial cells resulting in increased vascular permeability and hemolysis
 - β-toxin: necrotizing activity
 - Enterotoxin: binds to brush borders and disrupts small intestinal transport resulting in increased membrane permeability
- Clinical manifestations
 - Soft limited gastroenteritis
 - Soft tissue infections: cellulitis, fasciitis or myonecrosis (gas gangrene)
Clostridial soft tissue infections

Crepitant cellulitis

Fascitis

Myonecrosis

- Clinical course
 - Symptoms begin 1-4 days after inoculation and progresses rapidly to extensive muscle necrosis and shock
 - Local area with marked pain, swelling, serosanguinous discharge, bullae, slight crepitance
 - May be associated with increased CPK
- Treatment
 - Surgical debridement
 - Antibiotics
 - Hyperbaric oxygen

Case 2

- 80 year old woman who was treated for a pneumonia with a cephalosporin
 - Well upon discharge from hospital
 - 10 days later develops multiple, watery loose stools and abdominal cramps
 - Fever, bloody stools, worsened abdominal pain

Clostridial myonecrosis

- Leukocytosis with 80% neutrophils
- Fecal leukocytes
- Stool culture neg. for salmonella, shigella campylobacter, Yersinia spp
- Colonoscopy
 - White plaques of fibrin, mucous and inflammatory cells

Clostridium difficile

- Epidemiology
 - Endogenous infection
 - Colonizes GI tract in 5% healthy individuals
 - Antibiotic exposure associated with overgrowth of C. difficile
 - Cephalosporins, clindamycin, ampicillin/amoxicillin
 - Other contributing factors: agents altering GI motility, surgery, age, underlying illness
 - Exogenous infection
 - Spores detected in hospital rooms of infected patients
- Pathogenesis
 - Enterotoxin (toxin A)
 - Produces chemotaxis, induces cytokine production and hypersecretion of fluid, development of hemorrhagic necrosis
 - Cytotoxin (toxin B)
 - Induces polymerization of actin with loss of cellular cytoskeleton
C. difficile colitis

- Clinical syndromes
 - Asymptomatic colonization
 - Antibiotic-associated diarrhea
 - Pseudomembranous colitis
- Diagnosis
 - Isolation of toxin
- Culture
- Treatment
 - Discontinue antibiotics
 - Metronidazole or oral vancomycin
 - Pooled human IVIG for severe disease
 - Probiotics (saccharomyces boulardii)
 - New drugs (nitazoxanide, tolevamer)
 - Relapse in 20-30% (spores are resistant)

North American PFGE type 1 (NAP-1)

- Epidemiology:
 - Quebec 2003: 56.3/100,000; 18% severe, 14% died within 30 days
- Pathogenesis
 - Produces greater quantities of toxins A and B *in vitro*
 - Deletion in the tcdC gene (a putative negative regulator of toxin production)
 - Contains a binary toxin
 - Selected by fluoroquinolone use

Clostridium tetani

- Epidemiology
 - Spores found in most soils, GI tracts of animals
 - Disease in un-vaccinated or inadequately immunized
 - Disease does not induce immunity
- Pathogenesis
 - Spore inoculated into wound
 - Tetanospasmin
 - Heat-labile neurotoxin
 - Retrograde axonal transport to CNS
 - Blocks release of inhibitory neurotransmitters (e.g., GABA) into synapses, allowing excitatory synapses to be unregulated. This results in muscle spasms
 - Binding is irreversible
 - Tetanolysin
 - Oxygen labile hemolysin, unclear clinical significance

C. tetani exotoxin

Tetanus

- Clinical Manifestations
 - Generalized
 - Involvement of bulbar and paraspinal muscles
 - Trismus (lock jaw), risus sardonicus, opisthotonos
 - Autonomic involvement
 - Sweating, hyperthermia, cardiac arrhythmias, labile blood pressure
 - Cephalic
 - Involvement of cranial nerves only
 - Localized
 - Involvement of muscles in primary area of injury
 - Neonatal
 - Generalized in neonates; infected umbilical stump
Risus sardonicus and Opisthotonos of Tetanus

Tetanus

- Treatment
 - Debridement of wound
 - Metronidazole
 - Tetanus immunoglobulin
 - Vaccination with tetanus toxoid
- Prevention
 - Vaccination with a series of 3 tetanus toxoid
 - Booster dose every 10 years

Case 3

- 6 month old infant girl, full-term, previously healthy
- Progressive fussiness, poor oral intake, weak cry for 4 days.
- Uninterested in feeding or playing.
- Exam:
 - Listless
 - Afebrile, stable vital signs
 - Sluggish pupils, decreased tone, no reflexes bilaterally
- No ill contacts or recent travel, lives with parents on Staten Island
 - Construction in neighborhood
- Diet: Breast milk & some rice cereal only
- No fever, vomiting, diarrhea, rash, seizures

Case 3

- Serum, breast milk, stool sent to DOH for detection of Botulinum toxin
 - Stool POSTIVE for toxin type B
- Given Baby botulism immunoglobulin (Baby-BIG)
 - Regained movement of arm within a day
 - Began feeding in 4 days
- Clostridium botulinum
 - Epidemiology
 - Commonly isolated in soil and water
 - 20% soil samples
 - Human disease associated with botulinum toxin A, B, E, F
 - Pathogenesis
 - Blocks neurotransmission at peripheral cholinergic synapses
 - Prevents release of acetylcholine, resulting in muscle relaxation
 - Recovery depends upon regeneration of nerve endings
C. Botulinum Exotoxin

Botulinism

- Clinical Syndromes
 - Foodborne botulism
 - Associated with consumption of preformed toxin
 - Home-canned foods (toxin A, B)
 - Preserved fish (toxin E)
 - Infant botulism
 - Consumption of foods contaminated with botulinum spores
 - 6-10% of syrups or honeys
 - Disease associated with neurotoxin produced in vivo
 - Onset of symptoms 1-2 days
 - Blurred vision, dilated pupils, dry mouth, constipation
 - Bilateral descending weakness of peripheral muscles; death related to respiratory failure

- Infant botulism
 - Onset of symptoms in 3-10 days

- Wound botulism (skin popping)
 - Asymptomatic adult carriage

Cases of Infant Botulism 1976-1996

Botulism: diagnosis

- Clinical features:
 - Symmetric cranial nerve palsies (III, IV, VI, VII) causing 4Ds: diplopia, dysphonia, dysarthria, and dysphagia
 - Symmetric flaccid paralysis
 - Mentation remains intact
 - Identification of toxin or organism in stool or serum
 - Mouse bioassay most sensitive
 - Electromyography

Botulism: Treatment

- Treatment
 - Supportive care
 - Elimination of organism from GI tract
 - Gastric lavage
 - Metronidazole or penicillin
 - Botulinum Immunoglobulin (BIG): pooled plasma from adults immunized with pentavalent (ABCDE) botulinum toxoid
 - Trivalent equine Immunoglobulin (ABE)
 - Prevention
 - Prevention of spore germination (Storage <4°C, high sugar content, acid pH)
 - Destruction of preformed toxin (20 min at 80°C)

Anaerobic gram negative bacilli

- Bacteroides
 - B. fragilis
 - B. thetaiotaomicron
- Fusobacterium
- Prevotella
- Porphyromonas
Anaerobic gram negative bacilli

- **Epidemiology**
 - Bacteroides and Prevotella are most prevalent organisms in human flora
 - Oral cavity (crypts of tonsils and tongue, dental plaques and gingival crevices)
 - Anaerobes become prominent after eruption of teeth
 - Porphyromonas gingivalis found in 37% of subjects, colonization concordance in families
 - Fecobacterium
 - GI tract
 - Anaerobes outnumber aerobes 1000:1
 - 10^11 organisms per gram of fecal material
 - Bacteroides spp. (vulgatus and thetaiotaomicron most common)
 - Vagina

- **Clinical Diseases**
 - Chronic sinus infections
 - Periodontal infections
 - Brain abscess
 - Intra-abdominal infection
 - Gynecological infection
 - Diabetic and decubitus ulcers

Case 4

- 37 year old woman with peri-umbilical pain, anorexia, and nausea
 - Given diagnosis of food poisoning in the ER and sent home
 - Develops sharp right lower abdominal pain and fever over next 4 days

Bacteroides

- **Epidemiology**
 - B. fragilis associated with 80% of intra-abd infx
 - Peritonitis, intraabdominal abscesses
 - Diabetic foot ulcers

- **Pathogenesis**
 - Polysaccharide capsule
 - Increases adhesion to peritoneal surfaces (along with fimbriae)
 - Protection against phagocytosis
 - Differs from LPS of aerobic GNR
 - Less fatty acids linked to Lipid A component
 - Less pyrogenic activity
 - Abscess Formation
 - Produces superoxide dismutase and catalase
 - Elaborate a variety of enzymes
 - Synergistic infections with aerobes

Abscess Formation

- **Bacteroides Capsular Polysaccharide Complex (CPC)**
 - 2 discreet polysaccharides (PS A & PS B) with oppositely charged structural groups
 - Injection of CPC into peritoneum of rat results in abscess formation
 - Chemical neutralization or removal of charged groups abrogated abscess induction
 - Vaccination with CPC results in protection against abscess formation
 - T cells important in abscess formation

Wainstein, Infection and Immunity, 1974

![Diagram](image-url)
Abscess Formation

- Initial phase
 - Introduction of bacteria and inflammatory exudates (esp. fibrin)
- Microbial persistence (localization)
 - Impaired bacterial clearance: fibrin deposition, platelet clumping
 - Impaired phagocytic function: fibrin, hemoglobin
 - Impaired neutrophil migration and killing: hypoxia, low PH
 - Complement depletion: necrotic debris
- Development of mature abscess
 - Central core of necrotic debris, dead cells, bacteria
 - Surrounded by neutrophils and macrophages
 - Peripheral ring of fibroblasts and smooth muscle cells within collagen capsule

Conclusion

- Anaerobic infections
 - Endogenous or exogenous
 - Alteration of host tissue
 - Break in anatomic barrier
 - Devitalized tissue
 - Polymicrobial
 - Synergy between anaerobes and facultative bacteria
 - Abscess formation
 - Exotoxin elaboration