Infectious Diarrheal Diseases

Michael Yin, MD MS

Outline

- Epidemiology
- Pathogenic Mechanisms
- Host Defenses
- Representative Organisms
 - Non-inflammatory diarrhea
 - Inflammatory diarrhea
 - Enteric Fever
- Approach to the Patient

Epidemiology

- Major cause of morbidity and mortality in children developing world
 - Attack rate: 10-18 illnesses per child per year
 - In Asia, Africa, Latin America there are approximately 1 billion cases/yr resulting in 4-6 million deaths per year (12,600 deaths/day)
 - In some areas >50% of childhood deaths are attributable to acute diarrheal illnesses

Epidemiology

- Overall burden not well studied in developed world
 - Attack rate: 1-3 illnesses per child per year
 - Food-borne diarrheal disease in U.S.
 - 76 million illnesses per year
 - 350,000 hospitalizations
 - 5,000 deaths
 - Waterborne outbreaks

Epidemiology

- Most cases of acute infectious diarrhea are caused by viruses
- Bacterial pathogens isolated in 1-6% of cases
- Limitation of hospital based survey:
 - 22% examined
 - 5% submitted stool

Epidemiology

- Overall burden not well studied in developed world
- Attack rate: 1-3 illnesses per child per year
- Food-borne diarrheal disease in U.S.
 - 76 million illnesses per year
 - 350,000 hospitalizations
 - 5,000 deaths
- Waterborne outbreaks

Epidemiology

- Most cases of acute infectious diarrhea are caused by viruses
- Bacterial pathogens isolated in 1-6% of cases
- Limitation of hospital based survey:
 - 22% examined
 - 5% submitted stool

Bacterial Pathogens

- Water/Foodborne
 - Campylobacter
 - Salmonella (nontyphi)
 - Enterohemorrhagic E. coli (EHEC) and Enterotoxigenic E. coli (ETEC)
 - Vibrio
 - Yersinia
 - Clostridium perfringens
 - Bacillus cereus
 - Staphylococcus aureus

- Person-to-person
 - Shigellosis
 - Salmonella typhi
Pathogenic Mechanisms

• Inoculum size
 – 10-100 organisms
 • Shigella
 – <1000 organisms
 • Enterohemorrhagic E. coli (EHEC)
 • Salmonella typhi
 • Campylobacter jejuni
 – 10^5 to 10^8 organisms
 • Vibrio cholera
 • Salmonella (nontyphoidal)

• Adherence

• Toxin Production
 – Enterotoxin
 – Cytotoxin
 – Neurotoxin

• Invasion

Pathogenic Mechanisms

• Cholera Toxin (enterotoxin)
 – Composition of Toxin
 • A subunit (enzymatic activity)
 • B subunit (binds to enterocyte surface receptor, the ganglioside G_{M1})
 – After binding to enterocyte, A subunit
 • translocated across cell membrane
 • catalyzes ADP ribosylation of a GTP-binding protein resulting in persistent activation of adenylate cyclase

Cholera Toxin

![Cholera Toxin Diagram]

Pathogenic Mechanisms

• Shiga Toxin (cytotoxin)
 – Produced by S. dysenteriae
 – B subunit binds to host cell glycolipid (Gb3) and facilitates transfer of A subunit
 – A subunit disrupts protein synthesis by preventing binding of aminoacyl-transfer RNA to the 60S ribosomal subunit
 – Results in destruction of intestinal cells and villi, decreasing intestinal absorption

Pathogenic Mechanisms

• Toxin Production
 – Enterotoxin: cause watery diarrhea by acting directly on secretory mechanisms in the intestinal mucosa
 • Vibrio cholera, ETEC, Clostridium perfringens
 – Cytotoxin: cause destruction of mucosal cells and associated with inflammatory diarrhea
 • Shigella, Shiga-like toxin or verotoxin (EHEC)
 – Neurotoxin: act directly on central or peripheral nervous system
 • Staphylococcus aureus, Bacillus cereus
Pathogenic Mechanisms

- **Staphylococcus Aureus enterotoxin** (neurotoxin)
 - Heat-stable toxin
 - Increases peristalsis by sympathetic activation, resulting in intense vomiting
- **Bacillus Cereus enterotoxin**
 - Two enterotoxins
 - Emetic: incubation period 1-6 hours
 - Diarrheal: incubation period 10-12 hours

Pathogenic Mechanisms

- **Tissue Invasion**
 - Salmonella Pathogenicity Island-1 and 2 (SPI-1 & SPI-2)
 - Binds to microfold cells (M cell) or enterocytes
 - Introduces salmonella-secreted invasion proteins (Sips or Ssps) into M cells resulting in membrane ruffling and phagocytosis
 - Replicates in phagosome (tolerant to acids)
 - Spreads to adjacent epithelial cells and lymphoid tissue.

Host Defenses

- **Normal Flora**
 - Anaerobes: acidic pH & fatty acid production prevent colonization by bacterial pathogens
- **Gastric Acid**
 - Increased frequency of Salmonella among patients with gastric bypass
- **Intestinal Motility**
 - Impaired motility allows for bacterial overgrowth
- **Immunity**
 - Secretory IgA, systemic IgG and IgM
 - Cell-mediated immunity
 - Binding of bacterial antigens to the luminal side of M cells in distal small intestines, subsequent presentation of antigen to subepithelial lymphoid tissue

Clinical approach to Infectious Diarrheas

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Watery Diarrhea</th>
<th>Bloody diarrhea (Dysentery)</th>
<th>Enteric Fever</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Non inflammatory</td>
<td>Inflammatory</td>
<td>Penetrating</td>
</tr>
<tr>
<td>Pathogens</td>
<td></td>
<td>Invasive or cytotoxic</td>
<td>systemic infection</td>
</tr>
</tbody>
</table>
- **Vibrio cholera**
- **ETEC**
- **Clostridium Perfringens**
- **Bacillus cereus**
- **Staphylococcus aureus**
- **Shigella spp.**
- **Salmonella (Nontyphoidal)**
- **Campylobacter jejuni**
- **EIEC (EHEC)**
- **Clostridium difficile**
- **Salmonella typhi**
- **Yersinia enterocolitica**

A case of watery diarrhea

- 1 year old boy with abrupt onset of watery diarrhea and vomiting
- No fever, no bloody stool
- Development of sunken eyes, dry mouth, inability to feed, lack of urination
- Lethargic, unresponsive, death
- Father also with watery diarrhea (1 liter/hour), vomiting, cramps
MID 12

Index case

- "underneath the floorboards of the overcrowded cellars lurked ... a fetid sea of cesspits as old as the houses, many of which had never been drained"
- London had over 200,000 cesspools
- No incentive for maintenance

Vibrio Cholera

- **Microbiology**
 - Identified by Filippo Pacini in 1854 and Robert Koch in 1883
 - Curved gram negative bacillus with single polar flagellum
 - Over 200 serogroups, but only O1 and O139 somatic antigens are associated with epidemic and pandemic cholera
 - Non-O1 or non-O139 can be pathogenic and cause small outbreaks
 - Pathogenesis related to acquisition of the vibrio pathogenicity island (VPI) and bacteriophage (CTXΦ) which can be transmitted laterally between strains

Vibrio cholera

- **Epidemiology**
 - Lives in aquatic environments attached to algae or crustacean shells
 - Multiplies when temperature, salinity, and nutrients are suitable
 - Both an endemic and epidemic pattern
 - Endemic in South Asia, especially in Ganges Delta
 - Seven pandemics since 1817
 - Spread along trade-routes
 - New endemic areas
 - Transmission through contaminated food and water, person-to-person transmission is unusual

The 7th Cholera Pandemic (O1 biotype EL Tor) 1961-1971
22 cases of Vibrio illness
5 deaths
- V. vulnificus
- V. parahaemolyticus
- Non-O1 Non-O139

Vibrio cholera

- Clinical
 - Variable
 - 75% Asymptomatic
 - 20% Abdominal pain, fever, nausea, vomiting, and dehydration
 - 5% Severe watery diarrhea, vomiting, and dehydration
 - No tenesmus, strain or abdominal pain, or fever
 - Dehydration
 - Duration 1-3 days
- Treatment
 - Rehydration: IV followed by Oral Rehydration Solution (glucose and electrolytes)
 - Doxycycline

A case of bloody diarrhea

- 4 yr old boy who goes to daycare
- 2 hour history of vomiting, diarrhea, fever, irritability and lethargy
- Physical exam
 - Fever
 - Tachycardia
 - Tachypnea
 - Mild dehydration

Shigella

- Microbiology
 - Small gram negative rod, member of Enterobacteriaceae, tribe Escherichieae
 - 40 serotypes. Shigella sonnei (40-80% cases in U.S.), S. dysenteriae, S. flexneri, S. boydii
 - S. dysenteriae 1 produces Shiga toxin

- Pathogenesis
 - Low inoculum (<200 organisms)
 - Person-to-person spread, secondary cases common
 - Invasion of intestinal mucosa, moving from small to large intestines, with multiplication and mucosal destruction
 - Cytotoxin elaboration
 - Penetration beyond mucosa is rare
Shigella

- Clinical manifestations
 - 12 hours after ingestion, bacterial multiplication begins in the small intestines resulting in abdominal pain, cramping, watery diarrhea and fever
 - Resolution of fever in a few days
 - Onset of severe lower abdomen pain, accompanied by urgency, tenesmus, and bloody mucoid stools (dysentery)
 - Illness lasts for average of 7 days
 - Colonic shedding for 1-4 weeks
 - *S. dysenteriae* results in more serious diarrhea with risk of Hemolytic Uremic Syndrome (HUS)

E. coli

- Enterotoxigenic (ETEC): traveler’s diarrhea
- Enteroadherent (EAEC): traveler’s diarrhea and persistent diarrhea in children
- Enteropathogenic (EPEC): children’s diarrhea, nursery outbreaks
- Enterohemorrhagic (EHEC): hemorrhagic colitis, associated with HUS in children
- Enteroinvasive (EIEC): shigella-like dysentery

E. Coli O157:H7 epidemics

- 1982: ground beef
- 1990: drinking water
- 1991: apple cider
- 1992: hamburger
 - 28 illnesses in 6 states, 5 cases of HUS
 - PFGE analysis links isolates from 18 patients to ground beef from ConAgra
 - ConAgra recalls 18.6 million lbs of beef
- 2006: spinach
 - 173 illnesses in 25 states, 28 cases of HUS, 92 hospitalizations and 1 death
 - Spinach implicated grown in Monterey, San Benito and Santa Clara, CA.
 - Recalls by Pacific Coast Fruit Company, Triple B Corporation, S.T. Produce, RLB Food Distributors, and Natural Food Selection Foods
A case of Enteric Fever

- A 23 year old P&S student develops persistent fevers 2 weeks after returning from Mexico
 - Associated with headache, malaise and anorexia
 - Missed student health appointment prior to departure
 - Had self limited diarrhea while in Mexico
- Physical examination
 - Splenomegaly
 - Salmon pink rash
- Laboratory data
 - Leukopenia
 - Blood culture: gram negative rod

Salmonella

- Pathogenesis
 - Ingested Salmonella induce endocytosis by M cells and enterocytes in small intestines
 - Organisms replicate within phagosomes
 - Transcytose to basolateral surface and interact with macrophages and lymphocytes in Peyer’s patch
 - Recruitment of additional mononuclear cells and lymphocytes resulting in mucosal necrosis
 - Spread systemically to bone marrow, liver, spleen within macrophages
 - Risk of invasive salmonellosis greater in patients with impaired cell-mediated immunity (AIDS, transplant)

Salmonella

- Clinical Manifestations of Nontyphoidal Salmonella (*S. typhimurium, S enteritidis* etc.)
 - Gastroenteritis
 - Nausea, vomiting, diarrhea 6-48 hours after ingestion
 - Fever, abdominal cramping
 - Self limited (3-7 days)
 - Bacteremia
 - Occurs more rapidly than Typhoid and lacks typical rose spots and leukopenia
 - Often in AIDS patients
 - Tissue invasion/localized infections
 - Arterial infections, cholecystitis, osteomyelitis, septic arthritis

Salmonella

- Microbiology
 - Gram negative, facultative anaerobic rod
 - More than 2500 serotypes
 - *S. typhi* and *S. paratyphi*
 - Nontyphoidal Salmonella (*S. enteritidis, S. typhimurium S. virchow, S. dublin, S. cholerasuis etc...*)
- Epidemiology
 - *S. typhi* and *S. paratyphi* are strict human pathogens
 - Nontyphoidal salmonella colonizes virtually all animals; therefore, causes infection with through contaminated food
 - Up to 0.1% of eggs contain *S. enteritidis*

Salmonella

- Clinical Manifestations of *S. typhi* and *S. paratyphi*
 - Enteric Fever
 - Fever begins 5-21 days after ingestion and persists 4-6 weeks in untreated patients
 - Rose spots (30%), hepatosplenomegaly (50%)
 - Most symptoms resolved by fourth week
 - Complications: death in 1-30%, intestinal perforation, abscesses, endocarditis, relapse in 10%.
 - Asymptomatic carriage
 - 1-4%
Typhoid Mary

- 1900-1907: Mary Mallon linked to 7 family epidemics
- 1907-1910: confined to Willard Parker Hospital
- 1915: A devastating outbreak linked to Mary
- Confined to North Brother Island until death in 1938

Approach to patient

- Inflammatory or non-inflammatory
 - Epidemiologic context of infection
 - Traveler’s diarrhea
 - Food poisoning
 - Hospital acquired diarrhea
 - Degree of dehydration
 - Mild: dry mouth, decreased sweat and urine
 - Moderate: orthostasis, skin tenting, sunken eyes
 - Severe: hypotension, tachycardia, confusion, shock

- History
 - Duration
 - Fever
 - Appearance of stool
 - Abdominal pain
 - Tenesmus
 - Vomiting
 - Common source
 - Antibiotic use
 - Travel

- Stool evaluations
 - Fecal leukocytes
 - Bacterial culture
 - Toxin
 - Clostridium difficile toxin
 - Shiga toxin
 - Shiga-like toxin (EHEC)
 - Ova and parasites
Treatment

- Rehydration
- If non-inflammatory, continue symptomatic therapy
- If inflammatory, consider empiric antibiotic therapy
 - EHEC infection: increase incidence of HUS?
 - In vitro data vs. mouse models
 - Salmonella gastroenteritis: does not shorten illness but increases convalescent carriage

Prevention

- Environmental control
 - Chlorination of water, improved sanitation
 - Improvements in food processing
 - Handwashing
- Vaccines
 - Successful S. typhi vaccine to Vi antigen
 - Oral choler vaccine (Dukoral) composed of killed organism and cholera B subunit

Foodborne Illnesses from preformed toxins

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Incubation</th>
<th>Signs & symptoms</th>
<th>Duration of illness</th>
<th>Associated foods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus cereus</td>
<td>1-6 hrs</td>
<td>Nausea, vomiting</td>
<td>1 day</td>
<td>Rice, meats</td>
</tr>
<tr>
<td>Staph aureus</td>
<td>1-6 hrs</td>
<td>Nausea, vomiting</td>
<td>1-2 days</td>
<td>Meat, eggs, potatoes, salads</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>10-16 hrs</td>
<td>Cramps, diarrhea</td>
<td>1-2 days</td>
<td>Meat, stews</td>
</tr>
<tr>
<td>Clostridium perfringens</td>
<td>8-16 hrs</td>
<td>Diarrhea, vomiting, cramps</td>
<td>1-2 days</td>
<td>Meats, poultry gravy</td>
</tr>
<tr>
<td>Clostridium botulinum</td>
<td>12-72 hrs</td>
<td>Vomiting, diarrhea, blurred vision, weakness</td>
<td>variable</td>
<td>Canned foods, cheese sauce</td>
</tr>
</tbody>
</table>

Foodborne Illnesses from Bacterial Infections

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Incubation</th>
<th>Signs & symptoms</th>
<th>Duration of illness</th>
<th>Associated foods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listeria monocytogenes</td>
<td>0-48 hrs</td>
<td>Fever, muscle ache, N, D</td>
<td>Variable</td>
<td>Soft cheeses, milk, deli meats</td>
</tr>
<tr>
<td>Shigella spp.</td>
<td>24-48 hrs</td>
<td>Cramps, fever, diarrhea</td>
<td>Variable</td>
<td>Person to person, food</td>
</tr>
<tr>
<td>Yersinia enterocolytica</td>
<td>24-48 hrs</td>
<td>Diarrhea, fever, cramps</td>
<td>1-3 weeks</td>
<td>Pork, milk, water</td>
</tr>
<tr>
<td>Salmonella spp.</td>
<td>1-3 days</td>
<td>Diarrhea, fever, cramps</td>
<td>4-7 days</td>
<td>Pork, milk, cheese, fruits</td>
</tr>
<tr>
<td>EHEC</td>
<td>1-8 days</td>
<td>Severe bloody diarrhea</td>
<td>3-10 days</td>
<td>Beef, milk, raw fruits, veg</td>
</tr>
<tr>
<td>Campylobacter jejuni</td>
<td>2-5 days</td>
<td>Diarrhea, cramps, fever</td>
<td>2-10 days</td>
<td>Pork, milk, water</td>
</tr>
</tbody>
</table>

Foodborne illnesses

Prevention

- Food preparation
 - Wash hands, clean surfaces
 - Refrigerate promptly (within 2 hours)
 - Cook to proper temperatures
 - Beef and pork to 160°F
 - Poultry to 160°F
 - Egg until yolk and white are firm
 - If at high risk (immunocompromised, gastric surgery, cirrhosis)
 - Avoid raw shellfish, fish, meat, eggs
 - Avoid unpasteurized milks, cheeses, juice
Thomas Crapper (1836-1910)

- Plumber and inventor
- Did not invent the Water Closet
- Company produced and displayed bathroom fittings
- In 1917, American servicemen started calling WCs “The Crapper”