
Infectious Diarrheal Diseases

Michael Yin, MD MS

Epidemiology

- Overall burden not well studied in developed world
 - Attack rate: 1-3 illnesses per child per year
 - Food-borne diarrheal disease in U.S.
 - 76 million illnesses per year
 - 350,000 hospitalizations
 - 5,000 deaths
 - Waterborne outbreaks

Epidemiology

- Major cause of morbidity and mortality in children developing world
 - Attack rate: 10-18 illnesses per child per year
 - In Asia, Africa, Latin America there are approximately 1 billion cases/yr resulting in 4-6 million deaths per year (12,600 deaths/day)
 - In some areas >50% of childhood deaths are attributable to acute diarrheal illnesses

Bacterial Pathogens

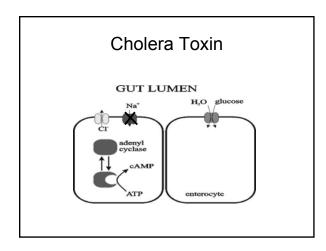
· Person-to-person

- Salmonella typhi

- Shigella

- Water/Foodborne
- Campylobacter
 Salmonella (nontyphi)
- Saimonella (nontyphi)
 Enterohemorrhagic E. coli
- (EHEC) and Enterotoxigenic *E. coli*
- (ETEC)
- Vibrio
- Yersinia
- Clostridium perfringens
- Bacillus cerus
- Staphylococcus aureus

Pathogenic Mechanisms


- Inoculum size
- Adherence
- Toxin Production
 - Enterotoxin
 - Cytotoxin
 - Neurotoxin
- Invasion

Pathogenic Mechanisms

- Cholera Toxin (enterotoxin)
 - Composition of Toxin
 - A subunit (enzymatic activity)
 - B subunit (binds to enterocyte surface receptor, the ganglioside $\rm G_{\rm M1})$
 - After binding to enterocyte, A subunit
 - translocated across cell membrane
 - catalyzes ADP ribosylation of a GTP-binding protein resulting in persistent activation of adenylate cyclase

Pathogenic Mechanisms

- · Inoculum size
 - 10-100 organisms
 Shigella
 - <1000 organisms
 - Enterohemorrhagic E. coli (EHEC)
 - Salmonella typhi
 - Campylobacter jejuni
 - 10⁵ to 10⁸ organisms
 - Vibrio cholera
 - Salmonella (nontyphoidal)

Pathogenic Mechanisms

- Toxin Production
 - Enterotoxin: cause watery diarrhea by acting directly on secretory mechanisms in the intestinal mucosa
 Vibrio cholera, ETEC, Clostridium perfringens
 - Cytotoxin: cause destruction of mucosal cells and associated with inflammatory diarrhea
 Shigella, Shiga-like toxin or verotoxin (EHEC)
 - Neurotoxin: act directly on central or peripheral nervous system
 - Staphylococcus aureus, Bacillus cereus

Pathogenic Mechanisms

- Shiga Toxin (cytotoxin)
 - Produced by S. dysenteriae
 - B subunit binds to host cell glycolipid (Gb3) and facilitates transfer of A subunit
 - A subunit disrupts protein synthesis by preventing binding of aminoacyl-transfer RNA to the 60S ribosomal subunit
 - Results in destruction of intestinal cells and villi, decreasing intestinal absorption

Pathogenic Mechanisms

- Staphylococcus Aureus enterotoxin (neurotoxin)
 - Heat-stabile toxin
 - Increases peristalsis by sympathetic activation, resulting in intense vomiting
- Bacillus Cereus enterotoxin

- Two enterotoxins

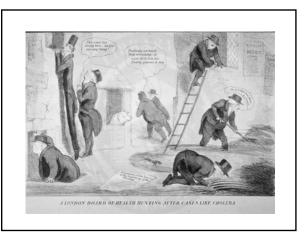
- Emetic: incubation period 1-6 hours
- Diarrheal: Incubation period 10-12 hours

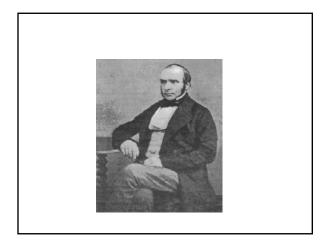
Clinical approach to Infectious Diarrheas

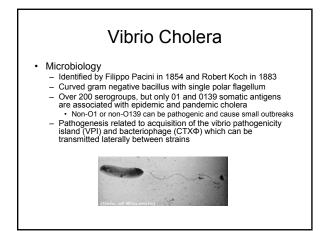
	Watery Diarrhea	Bloody diarrhea (Dysentery)	Enteric Fever
Mechanism	Non inflammatory (enterotoxin)	Inflammatory (invasion or cytotoxin)	Penetrating systemic infection
Location	Proximal small bowel	Colon or distal small bowel	Distal small bowel
Pathogens	Vibrio cholera ETEC Clostridium Perfringens Bacillus cereus Stapholococcus aureus	Shigella spp. Salmonella (Nontyphoidal) Campylobacter jejuni EIEC (EHEC) Clostridium difficile	Salmonella typhi Yersinia enterocolitica

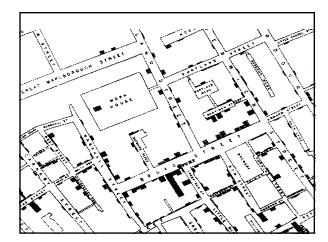
Pathogenic Mechanisms

- Tissue Invasion
 - Salmonella Pathogenicity Island-1 and 2 (SPI-1 & SPI-2)
 - · Binds to microfold cells (M cell) or enterocytes
 - Introduces salmonella-secreted invasion proteins (Sips or Ssps) into M cells resulting in membrane ruffling and phagocytosis
 - · Replicates in phagasome (tolerant to acids)
 - Spreads to adjacent epithelial cells and lymphoid tissue.

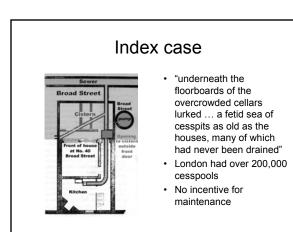

A case of watery diarrhea

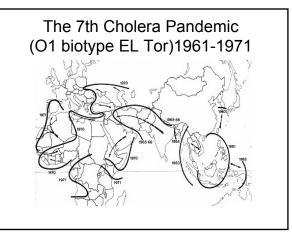

- 1 year old boy with abrupt onset of watery diarrhea and vomiting
- No fever, no bloody stool
- Development of sunken
- eyes, dry mouth, inability to feed, lack of urination
- Lethargic, unresponsive, death
- Father also with watery diarrhea (1 liter/hour), vomiting, cramps

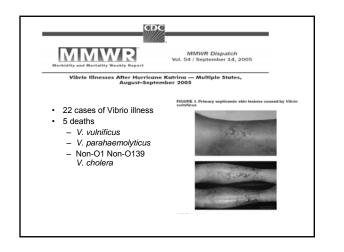


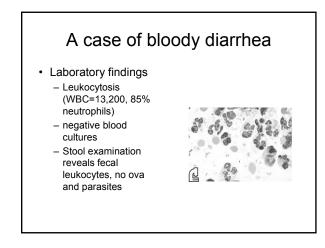

Host Defenses

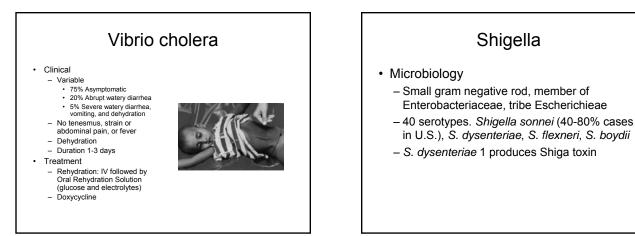
- Normal Flora
 - Anaerobes: acidic pH & fatty acid production prevent colonization by bacterial pathogens
- Gastric Acid
- Increased frequency of Salmonella among patients with gastric bypass
- Intestinal Motility
- Impaired motility allows for bacterial overgrowth
- Immunity
 - Secretory IgA, systemic IgG and IgM
 - Cell-mediated immunity • Binding of bacterial antigens to the luminal side of M cells in distal small intestines, subsequent presentation of antigen to subepithelial lymphoid tissue





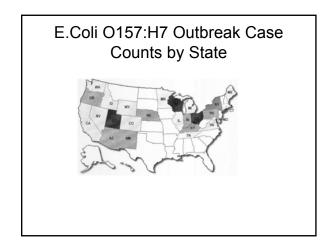

Vibrio cholera


Epidemiology


- Lives in aquatic environments attached to algae or crustacean shells
- Multiplies when temperature, salinity, and nutrients are suitable
- Both an endemic and epidemic pattern
 Endemic in South Asia, especially in Ganges Delta
 - Seven pandemics since 1817
 - Spread along trade-routes
 - New endemic areas
- Transmission through contaminated food and water, person-to-person transmission is unusual

A case of bloody diarrhea

- · 4 yr old boy who goes to daycare
- 2 hour history of vomiting, diarrhea, fever, irritability and lethargy
- Physical exam
 - Fever
 - Tachycardia
 - Tachypnea
 - Mild dehydration


Shigella

· Pathogenesis

- Low inoculum (<200 organisms)
 - Person-to-person spread, secondary cases common
- Invasion of intestinal mucosa, moving from small to large intestines, with multiplication and mucosal destruction
- Cytotoxin elaboration
- Penetration beyond mucosa is rare

Shigella


- Clinical manifestations
 - 12 hours after ingestion, bacterial multiplication begins in the small intestines resulting in abdominal pain, cramping, watery diarrhea and fever
 - Resolution of fever in a few days
 - Onset of severe lower abdomen pain, accompanied by urgency, tenesmus, and bloody mucoid stools (dysentery)
 - Illness lasts for average of 7 days
 - Colonic shedding for 1-4 weeks
 - S. dysenteriae results in more serious diarrhea with risk of Hemolytic Uremic Syndrome (HUS)

E.coli

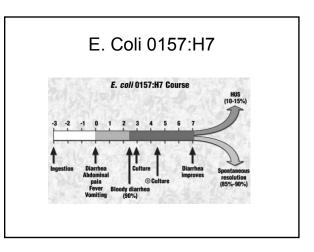
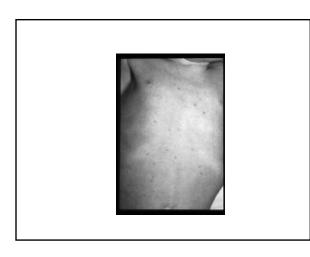
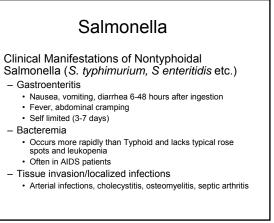

- Enterotoxigenic (ETEC): traveler's diarrhea
- Enteroadherent (EAEC): traveler's diarrhea and persistent diarrhea in children
- Enteropathogenic (EPEC): children's diarrhea, nursery outbreaks
- Enterohemorrhagic (EHEC): hemorrhagic colitis, associated with HUS in children
- · Enteroinvasive (EIEC): shigella-like dysentery

Figure 2. Cases per 100,000 population of foodborne disease caused by specific pathogens, FoodNet sites, 2003

E. Coli O157:H7 epidemics 1982: ground beef 1990: drinking water 1991: apple cider 1992: hamburger 28 illnesses in 6 states, 5 cases of HUS PFGE analysis links isolates from 18 patients to ground beef from ConAgra ConAgra recalls 18.6 million lbs of beef 2006: spinach T37 illnesses in 25 states, 28 cases of HUS, 92 hospitalizations and 1 death Spinach implicated grown in Monterey, San Benito and Santa Clara, CA.

CA. – Recalls by Pacific Coast Fruit Company, Triple B Corporation, S.T. Produce, RLB Food Distributors, and Natural Food Selection Foods


A case of Enteric Fever


- A 23 year old P&S student develops persistent fevers 2 weeks after returning from Mexico
 - Associated with headache, malaise and anorexia
 - Missed student health appointment prior to departure
 - Had self limited diarrhea while in Mexico
- Physical examination
- Splenomegaly
 - Salmon pink rash
- Laboratory data
 - Leukopenia
 - Blood culture: gram negative rod

Salmonella

· Pathogenesis

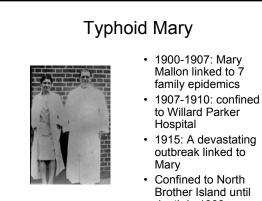
- Ingested Salmonella induce endocytosis by M cells and enterocytes in small intestines
- Organisms replicate within phagosomes
- Transcytose to basolateral surface and interact with macrophages and lymphocytes in Peyer's patch
- Recruitment of additional mononuclear cells and lymphocytes resulting in mucosal necrosis
- Spread systemically to bone marrow, liver, spleen within macrophages
 - Risk of invasive salmonellosis greater in patients with impaired cell-mediated immunity (AIDS, transplant)

Salmonella


- Microbiology
 - Gram negative, facultative anaerobic rod
 - More than 2500 serotypes
 - S. typhi and S. paratyphi
 - Nontypinalia of paragipin
 Nontypinalia Salmonella (S. enteritidis, S. typhimurium S. virchow, S. dublin, S. cholerasuis etc...)
- · Epidemiology
 - S. typhi and S. paratyphi are strict human pathogens
 - Nontyphoidal salmonella colonizes virtually all animals; therefore, causes infection with through
 - contaminated food
 - Up to 0.1% of eggs contain S. enteritidis

Salmonella

Clinical Manifestations of S. typhi and S. paratyphi


- Enteric Fever

- Fever begins 5-21 days after ingestion and persists 4-8
 weeks in untreated patients
- Rose spots (30%), hepatosplenomegaly (50%)
- Most symptoms resolved by fourth week
- Complications: death in 1-30%; intestinal perforation, abscesses, endocarditis; relapse in 10%.
- Asymptomatic carriage
 - 1-4%

Approach to patient

- · Inflammatory or non-inflammatory
 - Epidemiologic context of infection
 - · Traveler's diarrhea
 - Food poisoning
 - · Hospital acquired diarrhea
- Degree of dehydration
 - · Mild: dry mouth, decreased sweat and urine
 - Moderate: orthostasis, skin tenting, sunken eyes
 - · Severe: hypotension, tachycardia, confusion, shock

death in 1938

Approach to patient

- · History
 - Duration
 - Fever
 - Appearance of stool
 - Abdominal pain
 - Tenesmus
 - Vomiting
 - Common source
 - Antibiotic use
 - Travel

136
YEAR-19
or. Dients
Action
3
er)

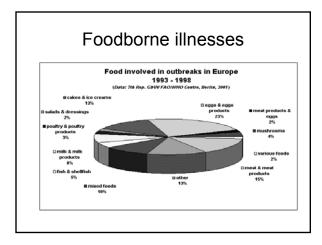
Approach to patient

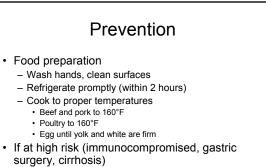
- · Stool evaluations
 - Fecal leukocytes
 - Bacterial culture
 - Toxin
 - · Clostridium difficile toxin
 - Shiga toxin
 - Shiga-like toxin (EHEC)
 - Ova and parasites

Treatment

- · Rehydration
- If non-inflammatory, continue symptomatic therapy
- If inflammatory, consider empiric antibiotic therapy
 - EHEC infection: increase incidence of HUS?
 In vitro data vs. mouse models
 - Salmonella gastroenteritis: does not shorten illness but increases convalescent carriage

Foodborne Illnesses from preformed toxins


Etiology	Incubation	Signs & symptoms	Duration of illness	Associated foods
Bacillus cereus	1-6 hrs	Nausea, vomiting	1 day	Rice, meats
Staph aureus	1-6 hrs	Nausea, vomiting	1-2 days	Meat, eggs, potatoes, salads
Bacillus cereus	10-16 hrs	Cramps, diarrhea	1-2 days	Meat, stews
Clostridium perfringens	8-16 hrs	Diarrhea, vomiting, cramps	1-2 days	Meats, poultry gravy
Clostridium botulinum	12-72 hrs	Vomiting, diarrhea, blurred vision, weakness	variable	Canned foods, cheese sauce


Prevention

- Environmental control
 - Chlorination of water, improved sanitation
 - Improvements in food processing
 - Handwashing
- Vaccines
 - Successful S. typhi vaccine to Vi antigen
 - Oral cholera vaccine (Dukoral) composed of killed organism and cholera B subunit

Foodborne Illnesses from Bacterial Infections

Etiology	Incubation	Signs & symptoms	Duration of illness	Associated foods
Listeria monocytogenes	9-48 hrs	Fever, muscle ache, N, D	Variable	Soft cheeses, milk, deli meats
Shigella spp.	24-48 hrs	Cramps, fever, diarrhea	Variable	Person to person, food
Yersinia enterocolytica	24-48 hrs	D,V, abd pain, fever	1-3 weeks	Pork, milk, water
Salmonella spp.	1-3 days	D, Fever, cramps	4-7 days	Poultry, milk, cheese, fruits
EHEC	1-8 days	Severe bloody diarrhea	5-10 days	Beef, milk, raw fruits,veg
Campylobacter jejuni	2-5 days	Diarrhea, cramps, fever	2-10 days	Poultry, milk, water

- Avoid raw shellfish, fish, meat, eggs
- Avoid unpasteurized milks, cheeses, juice

Thomas Crapper (1836-1910)

- Plumber and inventor
- Did not invent the Water Closet
- Company produced and displayed bathroom fittings
- In 1917, American servicemen started calling WCs "The Crapper"

