The Respiratory Viruses
Influenza, RSV, and Rhinoviruses

• Viruses that gain access to the body through the respiratory tract
• Some of the most common causes of symptomatic human infections
• Viral upper respiratory tract infections alone account for 26 million days of school absence and 23 million days of work absence in the US EACH YEAR!

The Virus
- Orthomyxovirus Family
 - Influenza A, B, and C
- Enveloped viruses with single strand, negative sense RNA genomes
- RNA is segmented
 - 8 segments in influenza A and B
 - 7 segments in influenza C

Influenza Virus Proteins

| PB1, PB2, PA: polymerase proteins |
| NA: neuraminidase protein- catalyzes removal of sialic acid residues and permits movement through mucous |
| HA: hemagglutinin- binds to sialic residues allowing viral attachment, mediates fusion of viral membrane with endosome |
| NP: nucleocapsid protein |
| M: M1- matrix protein- provides rigidity |
| M2- ion channel present only in flu A |
| NS: nonstructural proteins |

Influenza virus

(From RDavis Am Fam Phys 44: 74, 1991.)
Antigenic Drift and Shift

• Drift
 – Ongoing mutations within RNA encoding HA and NA proteins resulting in amino acid changes which decrease immune recognition
 – Seen in all types of flu, but influenza A has the greatest rate of change
 – Drift is responsible for the year to year variations in flu outbreaks

• Shift
 – Appearance of a new viral subtype with novel HA and/or NA due to reassortment of circulating human strains with strains of animal origin
 – Occurs in nature only with influenza A

From Shift to Pandemic

• Need a virus with HA and/or NA to which human population has little immunity
• Virus must replicate well in humans
• Virus must be transmissible from human to human
Pandemics
- 1918- “Spanish” flu H1N1; mortality 20-40 million worldwide; 500,000 US
- 1957- “Asian” flu H2N2; mortality 70,000 US
- 1968- “Hong Kong” flu H3N2; mortality 30,000 US
 - Modern circulating strain
 - Lower mortality than previous pandemics
 - Only HA changed
 - Similar strain circulated in 1890’s- elderly had some protection

Will this be another 1918?
- Pandemic preparedness
- Better health care
- Vaccines
 - Standard H5N1 vaccine disappointing
 - Much better when given with adjuvants
 - New “pan-influenza” vaccines

The Next Pandemic: H5N1?
- Why is this one different?
 - Kills birds and humans
 - Highly cleavable hemagglutinin
 - Enhanced replication
 - Increased resistance to IFN and TNF-α
 - Causes macrophages to produce more cytokines
 - Little innate human immunity
- Other possibilities
 - H9N1
 - H2N2

Clinical Manifestations
- Classical
 - fever- up to 106!
 - chills
 - headache
 - myalgia
 - arthralgia
 - dry cough
 - nasal discharge
- Acute phase usually 4-8 days followed by convalescence of 1-2 weeks
- Many people are asymptomatic

Complications
- Primary- viral (influenza) pneumonia
 - otherwise healthy adults
 - rapid progression of fever, cough, cyanosis following onset of flu sx’s
 - CXR with bilateral ISIF, ABG with hypoxia

Nations With Confirmed Cases H5N1 Avian Influenza (July 7, 2006)
Secondary- bacterial

- Classic flu followed by improvement then sx’s of pneumonia
- Pneumococcus most common; also see staph aureus and H.flu

Complications (cont.)

- Myositis
 - Most common in children after flu B infection
 - Can prevent walking: affects gastrocs and soleus
- Neurologic
 - GBS (controversial)
 - transverse myelitis and encephalitis
- Reye syndrome

Influenza vaccine

- Major public health intervention for preventing spread of influenza
- Currently use inactivated viruses circulating during the previous influenza season
- This year includes
 A/New Caledonia/20/1999 (H1N1)-like
 A/Wisconsin/67/2005 (H3N2)-like, and
 B/Malaysia/2506/2004-like viruses.
- Generally 50-80% protective
 - Less efficacious in the elderly but decreases hospitalization by 70% and death by 80%

Flumist

- Live attenuated flu vaccine licensed for use in healthy individuals aged 5-49
- Efficacious, some concern about viral shedding, useful for contacts of at-risk individuals (as long as they’re not very immunocompromised)
- Trials underway in children 6-23 months

Diagnosis

- Virus isolation and culture
- Antigen Tests
 - Performed directly on patient samples
 - Rapid
 - EIA for flu A
 - DFA for flu B
- Hexaplex
 - RT PCR for flu A and B, RSV, parainfluenza
 - Sens 100%; spec 98%

Vaccine: who should get it

- Any individual > 6mos who is at risk for complications of influenza
 - chronic cardiac, pulmonary (including asthma), renal disease, diabetes, hemoglobinopathies, immunosuppression
 - Children aged 6 mos to 59 months
- Residents of nursing homes
- Household contacts of infants < 6 mos
- Individuals who care for high-risk patients
- Healthy people over age 50*

* New ACIP recommendation
Most important groups to vaccinate

- all children aged 6–23 months;
- adults aged 65 years and older;
- persons aged 2–64 years with underlying chronic medical conditions;
- all women who will be pregnant during the influenza season;
- residents of nursing homes and long-term care facilities;
- children aged 6 months–18 years on chronic aspirin therapy;
- health-care workers involved in direct patient care; and
- out-of-home caregivers and household contacts of children aged <6 months

Respiratory Syncytial Virus

- Paramyxovirus
 - Genome encodes 10 viral proteins
 - F, G, SH- glycosylated surface proteins that mediate attachment of the virus to the host cell and fusion of the viral and cell membranes
 - N, L, and P- associate with RNA genome and form nucleocapsid and polymerase complex
 - M and M2- matrix proteins
 - NS1 and NS2 are non-structural proteins
 - Grows well in human cell lines and forms characteristic syncytia
 - Two groups of isolates have been identified and are designated A and B- circulate simultaneously during outbreaks

General Features of Paramyxoviruses

- Enveloped- lipid bilayer obtained from host cell
- Genome- single-stranded negative sense RNA
- Viral proteins
 - HN/H/G- attachment proteins
 - F- fusion protein
 - M- matrix protein
 - N- nucleoprotein
 - P/L- polymerase proteins

Treatment

- Amantidine/rimantidine
 - Symmetric amines
 - Inhibit viral uncoating by interfering with M2 protein
 - Approved for both treatment and prevention
 - If given within 48 hours of onset of symptoms, will decrease duration of illness by one day

- Neuraminidase inhibitors
 - zanamivir and oseltamivir
 - Mimic sialic acid residues blocking neuraminidase
 - Efficacious against both influenza A and B
Paramyxovirus Replication

Pathogenesis
- Inoculation occurs through the nose or eyes and spreads through respiratory epithelium.
- Viral replication in the peribronchiolar tissues leads to edema, proliferation and necrosis of the bronchioles. Collections of sloughed epithelial cells leads to obstruction of small bronchioles and air trapping.
- Pneumonia, either primary RSV or secondary bacterial may also develop. Pathology of RSV pneumonia shows multinucleated giant cells.

Epidemiology
- Ubiquitous
- Virtually all children infected by age 2
- Severe illness most common in young infants
 - Boys are more likely to have serious illness than girls
 - Lower socioeconomic background correlates with worse disease

Clinical Features
- Primary infection is usually symptomatic and lasts 7-21 days
 - Starts as URI with congestion, sore throat, fever
 - Cough deepens and becomes more prominent
 - LRT involvement heralded by increased respiratory rate and intercostal muscle retraction
 - Hospitalization rates can approach 40% in young infants
- Reinfection in adults and older children
 - Rarely asymptomatic
 - Generally resembles a severe cold

Striking seasonality in temperate climates
- Peaks in January
- Summer respite

![Multinucleated giant cell formation in RSV pneumonia](image)
• **Immunity**
 – Incomplete, reinfections are common
 – Cell-mediated immunity, as opposed to humoral, is important in protecting against severe disease.
 – Humoral immunity, in the absence of cell-mediated immunity, may predispose to more serious disease.

 • **High risk groups**
 – Very young infants (<6 weeks) especially preemies
 – Older adults
 • Mortality from RSV pneumonia can approach 20% in this group
 – Children with bronchopulmonary dysplasia and congenital heart disease
 – Immunocompromised individuals
 • SCID
 • Transplant recipients
 • Hematologic malignancies

 • **Treatment**
 – Supportive care
 – Bronchodilators
 • Studies suggest inhaled epinephrine more efficacious than inhaled β-agonists
 – Ribavirin
 • Aerosol
 • High-risk individuals only

 • **Prevention**
 – Gown and glove isolation in hospital
 – RSV immune globulin (RespiGam®) and palivizumab (Synagis®)- AAP recommendations
 • Children < 2 years with bronchopulmonary dysplasia and oxygen therapy in the 6 months prior to RSV season
 • Infants with gestational age < 32 weeks
 • Not approved for children with congenital heart disease
 • Being used anecdotally in immunocompromised individuals
 – No vaccine yet

• **Diagnosis**
 – Clinical, during outbreak
 – Virus isolation and growth
 – Rapid diagnostic techniques
 • Immunofluorescence
 • EIA/RIA
 • PCR
 – Serology

• **Rhinoviruses**
 • Most common cause of the common cold
 • Cause 30% of all upper respiratory infections
 • Over 110 different serotypes- prospects for a vaccine are pretty dismal
<table>
<thead>
<tr>
<th>Virus Group</th>
<th>Antigenic Types</th>
<th>Percentage of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhinoviruses</td>
<td>100 types and 2 subtypes</td>
<td>30-40%</td>
</tr>
<tr>
<td>Coronaviruses</td>
<td>3 or more</td>
<td>>10</td>
</tr>
<tr>
<td>Parainfluenza virus</td>
<td>4 types</td>
<td></td>
</tr>
<tr>
<td>Respiratory syncytial virus</td>
<td>2 types</td>
<td></td>
</tr>
<tr>
<td>Influenza virus</td>
<td>3 types</td>
<td></td>
</tr>
<tr>
<td>Adenovirus</td>
<td>47 types</td>
<td>10-15</td>
</tr>
<tr>
<td>Other viruses</td>
<td></td>
<td>30-35</td>
</tr>
</tbody>
</table>

Adapted from Mandell, 5th edition

Epidemiology

- Kids are the reservoir for rhinoviruses and have the most symptomatic infections
- Worldwide distribution
- Seasonal pattern in temperate climates
 - Seen in early fall and spring
 - Less common in winter and summer

Molecular Biology

- Members of the picornavirus family
- Also includes enteroviruses and hepatitis A
- Small, non-enveloped, single stranded RNA viruses
- Grow best at 33°C- temperature of the nose
- Most use ICAM-1 as receptor

Transmission

- Enter through the nasal or ophthalmic mucosa
- Infect a small number of epithelial cells
- NO viremia; not cytolytic
- Symptoms most likely due to host immune response- especially IL-8

Clinical Manifestations

- You all know the symptoms
- Rhinovirus colds rarely have fever associated with them
- Most colds last about a week
- A non-productive cough following a cold can last up to 3 weeks- this is NOT bacterial bronchitis
Complications

• Sinusitis
 – 87% of individuals with colds will have CT evidence of sinusitis- this is mostly viral!
• Exacerbation of chronic bronchitis and asthma
• Distinguishing normal post-cold symptoms from true bacterial superinfection is tough

Lifelong Lessons

• You can’t get flu from the flu vaccine
• You can’t get worse flu because you were vaccinated
• You don’t get a cold because you’re cold/not wearing a hat/wet
• There is no moral or immunologic superiority associated with not getting colds
• Stand firm- Don’t give out antibiotics for colds (or any other viral infections)

Treatment

• Tincture of time
• Symptomatic relief
 – Decongestants
 – Antihistamines
 – NSAIDs
• Randomized, controlled clinical trials have failed to show a benefit from vitamin C or Echinacea
• Virus specific therapies not practically useful

DO NOT GIVE ANTIBIOTICS FOR THE COMMON COLD

Myths of the Common Cold

• susceptibility to colds requires a weakened immune system.
• Central heating dries the mucus membranes of the nose and makes a person more susceptible to catching a cold.
• Becoming cold or chilled leads to catching a cold.
• Having cold symptoms is good for you because they help you get over a cold, therefore you should not treat a cold.
• Drinking milk causes increased nasal mucus during a cold.
• You should feed a cold (and starve a fever).

* From J. Gwaltney and F. Hayden’s common cold website